Nowcasting Mexico’s quarterly GDP using factor models and bridge equations

IF 0.4 4区 经济学 Q4 ECONOMICS Estudios De Economia Pub Date : 2020-12-01 DOI:10.24201/EE.V35I2.402
O. Gálvez-Soriano
{"title":"Nowcasting Mexico’s quarterly GDP using factor models and bridge equations","authors":"O. Gálvez-Soriano","doi":"10.24201/EE.V35I2.402","DOIUrl":null,"url":null,"abstract":"Short term forecasts of GDP have become a necessary practice among central banks in order to take better informed monetary policy decisions. In this paper, I evaluate five nowcasting models that I used to forecast Mexico's quarterly GDP in the short run: a dynamic factor model (DFM), two bridge equation (BE) models and two models based on principal components analysis (PCA). The results indicate that the average of the two BE forecasts is statistically better than the rest of the models under consideration, according to the Diebold-Mariano accuracy test (Diebold and Mariano, 1995). Using real-time information, I show that the average of the BE models is also more accurate than the median of the forecasts provided by the analysts surveyed by Bloomberg, the median of the experts who answer Banco de Mexico’s Survey of Professional Forecasters and the rapid GDP estimate released by INEGI.","PeriodicalId":43766,"journal":{"name":"Estudios De Economia","volume":"56 1","pages":"213-265"},"PeriodicalIF":0.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estudios De Economia","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.24201/EE.V35I2.402","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

Short term forecasts of GDP have become a necessary practice among central banks in order to take better informed monetary policy decisions. In this paper, I evaluate five nowcasting models that I used to forecast Mexico's quarterly GDP in the short run: a dynamic factor model (DFM), two bridge equation (BE) models and two models based on principal components analysis (PCA). The results indicate that the average of the two BE forecasts is statistically better than the rest of the models under consideration, according to the Diebold-Mariano accuracy test (Diebold and Mariano, 1995). Using real-time information, I show that the average of the BE models is also more accurate than the median of the forecasts provided by the analysts surveyed by Bloomberg, the median of the experts who answer Banco de Mexico’s Survey of Professional Forecasters and the rapid GDP estimate released by INEGI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用因子模型和桥式方程预测墨西哥季度GDP
国内生产总值的短期预测已成为各国央行采取更明智的货币政策决策的必要做法。在本文中,我评估了我用来预测墨西哥短期季度GDP的五个临近预测模型:一个动态因素模型(DFM),两个桥梁方程(BE)模型和两个基于主成分分析(PCA)的模型。结果表明,根据Diebold-Mariano精度检验(Diebold and Mariano, 1995),两种BE预测的平均值在统计上优于所考虑的其他模型。通过使用实时信息,我发现BE模型的平均值也比彭博社(Bloomberg)调查的分析师给出的预测中值、回答墨西哥银行(Banco de Mexico)专业预测者调查的专家给出的预测中值和国家经济研究所(INEGI)发布的快速GDP预测中值更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
4
审稿时长
12 weeks
期刊最新文献
Efeitos do BNDES Finame nas firmas brasileiras: uma análise de sobrevivência para os anos de 2002 a 2016 Diferença salarial e taxa de participação no mercado de trabalho brasileiro: uma análise a partir do sexo dos indivíduos Previdência social e migração: O que acontece com os trabalhadores que saem do Brasil e se aposentam na Espanha e em Portugal? Early childhood education effect on children’s vocabulary A trajetória de Tobias de Lacerda Martins Moscoso entre a Escola Politécnica e a Econometric Society: uma história inacabada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1