Estimation of Electric Vehicle Turning Radius Through Machine Learning for Roundabout Cornering

Ashaa Supramaniam, M. A. Zakaria, Baarath Kunjunni, M. H. Peeie, A. Nasir, M. I. Ishak
{"title":"Estimation of Electric Vehicle Turning Radius Through Machine Learning for Roundabout Cornering","authors":"Ashaa Supramaniam, M. A. Zakaria, Baarath Kunjunni, M. H. Peeie, A. Nasir, M. I. Ishak","doi":"10.1109/SCOReD53546.2021.9652676","DOIUrl":null,"url":null,"abstract":"This paper presents an alternative approach for estimating the turning radius using machine learning technique. While on-board sensors are unable to offer adequate information on vehicle states to the algorithm, vehicle states other than those directly detected by on-board sensors can be inferred using machine learning (ML) approaches based on the collected data. A compact electric vehicle model is used to obtain data and measurements of the vehicle states for different sets of road radius. The augmented basic measurements is fed to an Extra Tree Regression to predict the turning radius of the vehicle. The feasibility of the developed algorithm was tested and validated using performance metrics. The results show that the regression accuracy for the turning radius is 99% and can be obtained with sufficient vehicle dynamics information.","PeriodicalId":6762,"journal":{"name":"2021 IEEE 19th Student Conference on Research and Development (SCOReD)","volume":"80 1","pages":"329-332"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCOReD53546.2021.9652676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an alternative approach for estimating the turning radius using machine learning technique. While on-board sensors are unable to offer adequate information on vehicle states to the algorithm, vehicle states other than those directly detected by on-board sensors can be inferred using machine learning (ML) approaches based on the collected data. A compact electric vehicle model is used to obtain data and measurements of the vehicle states for different sets of road radius. The augmented basic measurements is fed to an Extra Tree Regression to predict the turning radius of the vehicle. The feasibility of the developed algorithm was tested and validated using performance metrics. The results show that the regression accuracy for the turning radius is 99% and can be obtained with sufficient vehicle dynamics information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的电动汽车环形交叉口转弯半径估计
本文提出了一种利用机器学习技术估计转弯半径的替代方法。虽然车载传感器无法向算法提供足够的车辆状态信息,但除了车载传感器直接检测到的车辆状态外,还可以根据收集到的数据,使用机器学习(ML)方法来推断车辆状态。采用紧凑型电动汽车模型获取不同道路半径组下的车辆状态数据和测量结果。将增强的基本测量值输入额外的树回归来预测车辆的转弯半径。利用性能指标对所开发算法的可行性进行了测试和验证。结果表明,该方法对转弯半径的回归精度为99%,可以在充分的车辆动力学信息下得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Sizing of Solar Panel and Battery Storage for A Smart Aquaponic System eMarket for Local Farmers Advanced Encryption Standard Mobile Application to Improve College Entrance Security in UNIMAS Automated DJ Pad Audio Mashups Playback Compositions in Computer Music Utilizing Harmony Search Algorithm Ensembles for Text-Based Sarcasm Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1