T. Shiraishi, T. Yagisawa, T. Ikeuchi, S. Ide, K. Tanaka
{"title":"Cost-effective low-loss flexible optical engine with microlens-imprinted film for high-speed on-board optical interconnection","authors":"T. Shiraishi, T. Yagisawa, T. Ikeuchi, S. Ide, K. Tanaka","doi":"10.1109/ECTC.2012.6249035","DOIUrl":null,"url":null,"abstract":"There is a strong demand for optical interconnection technology to overcome bandwidth bottlenecks in high-end server systems. The interconnection speed in present systems is approaching 10 Gb/s, and higher-speed interconnections over 25 Gb/s are being discussed. To achieve such optical interconnections in commercial production, it is necessary to develop lower-cost and higher-speed optical transceiver modules. We propose a flexible printed circuit optical engine (FPC-OE) with a microlens-imprinted film and a polymer waveguide to achieve low-cost and high-speed operation. The microlens-imprinted film can be produced at low cost by using nanoimprint technology and can drastically reduce the optical loss of the FPC-OE with polymer waveguide. We successfully demonstrated error-free operation at 25 Gb/s with the fabricated optical transceiver that contains an FPC-OE, microlens-imprinted film, and a polymer waveguide.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":"27 1","pages":"1505-1510"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 62nd Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2012.6249035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
There is a strong demand for optical interconnection technology to overcome bandwidth bottlenecks in high-end server systems. The interconnection speed in present systems is approaching 10 Gb/s, and higher-speed interconnections over 25 Gb/s are being discussed. To achieve such optical interconnections in commercial production, it is necessary to develop lower-cost and higher-speed optical transceiver modules. We propose a flexible printed circuit optical engine (FPC-OE) with a microlens-imprinted film and a polymer waveguide to achieve low-cost and high-speed operation. The microlens-imprinted film can be produced at low cost by using nanoimprint technology and can drastically reduce the optical loss of the FPC-OE with polymer waveguide. We successfully demonstrated error-free operation at 25 Gb/s with the fabricated optical transceiver that contains an FPC-OE, microlens-imprinted film, and a polymer waveguide.