Prediction of vessels locations and maritime traffic using similarity measurement of trajectory

IF 2.7 Q1 GEOGRAPHY Annals of GIS Pub Date : 2020-11-04 DOI:10.1080/19475683.2020.1840434
Danial Alizadeh, A. Alesheikh, M. Sharif
{"title":"Prediction of vessels locations and maritime traffic using similarity measurement of trajectory","authors":"Danial Alizadeh, A. Alesheikh, M. Sharif","doi":"10.1080/19475683.2020.1840434","DOIUrl":null,"url":null,"abstract":"ABSTRACT Maritime traffic prediction is a crucial task for increasing the efficiency of port operations and safety, especially in congested regions. A huge amount of automatic identification system (AIS) data is constantly transmitting from vessels to receivers that contain information about vessels’ movements and characteristics. These historical AIS data can be utilized in movement analyses of vessels. This paper proposes a novel point-based model for location and traffic prediction using vessels’ trajectories adapted from AIS measures. The location prediction procedure is setup based on similarity analysis of historical AIS data. The model is applied to a real dataset of hundreds of vessels’ trajectories in the Strait of Georgia, USA. The correlation results of 0.9976, 0.9887, and 0.9794 for the next 10, 20, and 30 minutes, respectively, imply sufficient correspondence between predicted and actual coordinates. The traffic prediction procedure considers the probability of the appearance of new vessels inside an area of interest (AoI) at different time intervals. The Sorenson similarity index (SSI) is used to measure the accuracy of the traffic prediction model. The SSIs for time intervals of 10, 20, and 30 minutes are 70%, 66%, and 59%, respectively, which show the robustness of the model to predict hot spots inside the AoI.","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"61 1","pages":"151 - 162"},"PeriodicalIF":2.7000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2020.1840434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 16

Abstract

ABSTRACT Maritime traffic prediction is a crucial task for increasing the efficiency of port operations and safety, especially in congested regions. A huge amount of automatic identification system (AIS) data is constantly transmitting from vessels to receivers that contain information about vessels’ movements and characteristics. These historical AIS data can be utilized in movement analyses of vessels. This paper proposes a novel point-based model for location and traffic prediction using vessels’ trajectories adapted from AIS measures. The location prediction procedure is setup based on similarity analysis of historical AIS data. The model is applied to a real dataset of hundreds of vessels’ trajectories in the Strait of Georgia, USA. The correlation results of 0.9976, 0.9887, and 0.9794 for the next 10, 20, and 30 minutes, respectively, imply sufficient correspondence between predicted and actual coordinates. The traffic prediction procedure considers the probability of the appearance of new vessels inside an area of interest (AoI) at different time intervals. The Sorenson similarity index (SSI) is used to measure the accuracy of the traffic prediction model. The SSIs for time intervals of 10, 20, and 30 minutes are 70%, 66%, and 59%, respectively, which show the robustness of the model to predict hot spots inside the AoI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用轨迹相似性测量预测船舶位置和海上交通
海上交通预测是提高港口运营效率和安全的关键任务,特别是在拥挤的地区。大量的自动识别系统(AIS)数据不断地从船舶传输到接收器,其中包含有关船舶运动和特征的信息。这些历史AIS数据可用于船舶运动分析。本文提出了一种新的基于点的船舶位置和交通预测模型,该模型采用了自适应AIS测量的船舶轨迹。建立了基于历史AIS数据相似性分析的位置预测程序。该模型应用于美国乔治亚海峡数百艘船只轨迹的真实数据集。接下来的10分钟、20分钟和30分钟的相关结果分别为0.9976、0.9887和0.9794,这意味着预测坐标与实际坐标之间有足够的对应关系。交通预测程序考虑在不同时间间隔的兴趣区域(AoI)内出现新船只的概率。使用Sorenson相似度指数(SSI)来衡量流量预测模型的准确性。10分钟、20分钟和30分钟的ssi分别为70%、66%和59%,表明模型对AoI内部热点的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of GIS
Annals of GIS Multiple-
CiteScore
8.30
自引率
2.00%
发文量
31
期刊最新文献
Zero watermarking algorithm for BIM data based on distance partitioning and local feature Controlling for spatial confounding and spatial interference in causal inference: modelling insights from a computational experiment Application of GIS and fuzzy sets to small-scale site suitability assessment for extensive brackish water aquaculture Revealing intra-urban hierarchical spatial structure through representation learning by combining road network abstraction model and taxi trajectory data The time- and distance-decay effects of hurricane relevancy on social media: an empirical study of three hurricanes in the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1