{"title":"Efficient eigenvalue counts for tree-like networks","authors":"Grover E. C. Guzman, P. Stadler, André Fujita","doi":"10.1093/comnet/cnac040","DOIUrl":null,"url":null,"abstract":"\n Estimating the number of eigenvalues $\\mu_{[a,b]}$ of a network’s adjacency matrix in a given interval $[a,b]$ is essential in several fields. The straightforward approach consists of calculating all the eigenvalues in $O(n^3)$ (where $n$ is the number of nodes in the network) and then counting the ones that belong to the interval $[a,b]$. Another approach is to use Sylvester’s law of inertia, which also requires $O(n^3)$. Although both methods provide the exact number of eigenvalues in $[a,b]$, their application for large networks is computationally infeasible. Sometimes, an approximation of $\\mu_{[a,b]}$ is enough. In this case, Chebyshev’s method approximates $\\mu_{[a,b]}$ in $O(|E|)$ (where $|E|$ is the number of edges). This study presents two alternatives to compute $\\mu_{[a,b]}$ for locally tree-like networks: edge- and degree-based algorithms. The former presented a better accuracy than Chebyshev’s method. It runs in $O(d|E|)$, where $d$ is the number of iterations. The latter presented slightly lower accuracy but ran linearly ($O(n)$).","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnac040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating the number of eigenvalues $\mu_{[a,b]}$ of a network’s adjacency matrix in a given interval $[a,b]$ is essential in several fields. The straightforward approach consists of calculating all the eigenvalues in $O(n^3)$ (where $n$ is the number of nodes in the network) and then counting the ones that belong to the interval $[a,b]$. Another approach is to use Sylvester’s law of inertia, which also requires $O(n^3)$. Although both methods provide the exact number of eigenvalues in $[a,b]$, their application for large networks is computationally infeasible. Sometimes, an approximation of $\mu_{[a,b]}$ is enough. In this case, Chebyshev’s method approximates $\mu_{[a,b]}$ in $O(|E|)$ (where $|E|$ is the number of edges). This study presents two alternatives to compute $\mu_{[a,b]}$ for locally tree-like networks: edge- and degree-based algorithms. The former presented a better accuracy than Chebyshev’s method. It runs in $O(d|E|)$, where $d$ is the number of iterations. The latter presented slightly lower accuracy but ran linearly ($O(n)$).