Learning visual categories through a sparse representation classifier based cross-category knowledge transfer

Ying Lu, Liming Chen, A. Saidi, Zhaoxiang Zhang, Yunhong Wang
{"title":"Learning visual categories through a sparse representation classifier based cross-category knowledge transfer","authors":"Ying Lu, Liming Chen, A. Saidi, Zhaoxiang Zhang, Yunhong Wang","doi":"10.1109/ICIP.2014.7025032","DOIUrl":null,"url":null,"abstract":"To solve the challenging task of learning effective visual categories with limited training samples, we propose a new sparse representation classifier based transfer learning method, namely SparseTL, which propagates the cross-category knowledge from multiple source categories to the target category. Specifically, we enhance the target classification task in learning a both generative and discriminative sparse representation based classifier using pairs of source categories most positively and most negatively correlated to the target category. We further improve the discriminative ability of the classifier by choosing the most discriminative bins in the feature vector with a feature selection process. The experimental results show that the proposed method achieves competitive performance on the NUS-WIDE Scene database compared to several state of the art transfer learning algorithms while keeping a very efficient runtime.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"3 1","pages":"165-169"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To solve the challenging task of learning effective visual categories with limited training samples, we propose a new sparse representation classifier based transfer learning method, namely SparseTL, which propagates the cross-category knowledge from multiple source categories to the target category. Specifically, we enhance the target classification task in learning a both generative and discriminative sparse representation based classifier using pairs of source categories most positively and most negatively correlated to the target category. We further improve the discriminative ability of the classifier by choosing the most discriminative bins in the feature vector with a feature selection process. The experimental results show that the proposed method achieves competitive performance on the NUS-WIDE Scene database compared to several state of the art transfer learning algorithms while keeping a very efficient runtime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于跨类别知识迁移的稀疏表示分类器学习视觉类别
为了解决在有限的训练样本下学习有效视觉类别的难题,我们提出了一种新的基于稀疏表示分类器的迁移学习方法,即SparseTL,它将多个源类别的跨类别知识传播到目标类别。具体来说,我们使用与目标类别最正相关和最负相关的源类别对,在学习基于生成和判别稀疏表示的分类器时增强了目标分类任务。我们通过特征选择过程在特征向量中选择最具判别性的bin,进一步提高了分类器的判别能力。实验结果表明,该方法在保持高效运行时间的同时,在NUS-WIDE场景数据库上取得了与几种最先进的迁移学习算法相媲美的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1