Mechanical properties and metallurgical characterization of FSPed TIG and TIG welded AA5052-H32/AA5083-H111 dissimilar aluminium alloys

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Metallurgical Research & Technology Pub Date : 2021-01-01 DOI:10.1051/METAL/2021005
Antony Prabu Dhanaraj, S. Kumarasamy
{"title":"Mechanical properties and metallurgical characterization of FSPed TIG and TIG welded AA5052-H32/AA5083-H111 dissimilar aluminium alloys","authors":"Antony Prabu Dhanaraj, S. Kumarasamy","doi":"10.1051/METAL/2021005","DOIUrl":null,"url":null,"abstract":"This work describes the mechanical properties and metallurgical characterization of Friction Stir Processing (FSP) on TIG welded dissimilar AA5052-H32 and AA5083-H111 alloys using ER5356 filler wire. A comparison is drawn between unprocessed TIG weld and FS Processed (FSPed) TIG welded specimen with the identical combination. The fabricated welded joints were investigated By Optical Microscope (OM), Scanning Electron Microscope (SEM) Analysis, Tensile Strength Analysis, and Micro-Hardness testing. The results illustrate the improvement in mechanical properties after FSPed of the TIG welded joint resulting in enhanced tensile strength (224.5 MPa) and hardness (104 HV) in contrast to the unprocessed TIG weld joints with (192.5 MPa) and (70 Hv). In addition, during the mechanical characterization, the FSPed TIG welds show fine grain at the Friction Stir (FS) processed zone with fine grain structures which improves the hardness at the FS zone. The mechanical property of FS joint is superior when compared to the unprocessed TIG weld joint.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"35 1","pages":"304"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/METAL/2021005","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 6

Abstract

This work describes the mechanical properties and metallurgical characterization of Friction Stir Processing (FSP) on TIG welded dissimilar AA5052-H32 and AA5083-H111 alloys using ER5356 filler wire. A comparison is drawn between unprocessed TIG weld and FS Processed (FSPed) TIG welded specimen with the identical combination. The fabricated welded joints were investigated By Optical Microscope (OM), Scanning Electron Microscope (SEM) Analysis, Tensile Strength Analysis, and Micro-Hardness testing. The results illustrate the improvement in mechanical properties after FSPed of the TIG welded joint resulting in enhanced tensile strength (224.5 MPa) and hardness (104 HV) in contrast to the unprocessed TIG weld joints with (192.5 MPa) and (70 Hv). In addition, during the mechanical characterization, the FSPed TIG welds show fine grain at the Friction Stir (FS) processed zone with fine grain structures which improves the hardness at the FS zone. The mechanical property of FS joint is superior when compared to the unprocessed TIG weld joint.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AA5052-H32/AA5083-H111异种铝合金的FSPed TIG和TIG焊接力学性能和冶金学表征
本文介绍了采用ER5356焊丝对AA5052-H32和aa5083 - h11异种合金进行TIG焊接的搅拌摩擦处理(FSP)力学性能和冶金学表征。在相同组合下,对未处理TIG焊件和FS处理TIG焊件进行了比较。通过光学显微镜(OM)、扫描电镜(SEM)、拉伸强度分析和显微硬度测试对焊接接头进行了研究。结果表明,与未处理TIG焊接接头的抗拉强度(192.5 MPa)和硬度(70 HV)相比,经过FSPed处理的TIG焊接接头的力学性能得到了改善,抗拉强度(224.5 MPa)和硬度(104 HV)均有所提高。此外,在力学表征过程中,FSPed TIG焊缝在搅拌摩擦(FS)加工区表现出细小的晶粒,具有细小的晶粒组织,从而提高了搅拌摩擦(FS)加工区的硬度。与未加工的TIG焊接接头相比,FS接头的力学性能优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
期刊最新文献
Bend forming of aluminum alloy integral panel: a review Kinetic and mechanical properties of boronized AISI 1020 steel with Baybora-2 powder The method of reducing energy consumption in large blast furnace smelting by increasing top pressure Distribution behavior and deportation of arsenic in copper top-blown smelting process Effect of slag properties and non-uniform bottom blowing gas supply mode on fluid flow and mixing behavior in converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1