Stress Shielding Prediction of Unicortical and Bicortical Screws: A Finite Element Analysis

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of Mechanical Engineering and Sciences Pub Date : 2023-04-15 DOI:10.24191/jmeche.v20i2.22052
K. Basaruddin
{"title":"Stress Shielding Prediction of Unicortical and Bicortical Screws: A Finite Element Analysis","authors":"K. Basaruddin","doi":"10.24191/jmeche.v20i2.22052","DOIUrl":null,"url":null,"abstract":"The stability in an implant fixation plays a vital role in ensuring proper formation and remodelling process of the fractured bone. Failure in implant fixation is commonly associated with short- and long-term instability of the bone-implant interface. The bone-implant interaction creates a complicated mechanical interplay that might influence the stress distribution and hence the biomechanical performance stability of the implant fixation. Furthermore, implant screw parameters namely thread size, geometrical design and material properties become additional factors that affect the bone-implant interaction. The purpose of this study was to investigate the effect of unicortical and bicortical screws’ parameters on the screw-bone interaction mechanism. To evaluate the stress transfers between screw and bone, the stress parameters namely stress transfer parameters (STP) was employed. A two-dimensional (2D) finite element model of full treaded screw was simulated while varying the parameters of the screw: two types of material (stainless steel A316 and titanium alloy Ti-6Al-4V), screw length and screw pitch. It was found that the lower in elastic modulus results to the higher stress transfer between implant- bone interface. As the titanium have lower elastic modulus, it gave higher values of STP which help to transmit and distribute stress better compared to the stainless steel. While the effect of varying screw pitch between two types of screws shows that STPs values of fully threaded bicortical screws shows significant result for finer pitch size that may advancing bone remodelling process at the early stage.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i2.22052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The stability in an implant fixation plays a vital role in ensuring proper formation and remodelling process of the fractured bone. Failure in implant fixation is commonly associated with short- and long-term instability of the bone-implant interface. The bone-implant interaction creates a complicated mechanical interplay that might influence the stress distribution and hence the biomechanical performance stability of the implant fixation. Furthermore, implant screw parameters namely thread size, geometrical design and material properties become additional factors that affect the bone-implant interaction. The purpose of this study was to investigate the effect of unicortical and bicortical screws’ parameters on the screw-bone interaction mechanism. To evaluate the stress transfers between screw and bone, the stress parameters namely stress transfer parameters (STP) was employed. A two-dimensional (2D) finite element model of full treaded screw was simulated while varying the parameters of the screw: two types of material (stainless steel A316 and titanium alloy Ti-6Al-4V), screw length and screw pitch. It was found that the lower in elastic modulus results to the higher stress transfer between implant- bone interface. As the titanium have lower elastic modulus, it gave higher values of STP which help to transmit and distribute stress better compared to the stainless steel. While the effect of varying screw pitch between two types of screws shows that STPs values of fully threaded bicortical screws shows significant result for finer pitch size that may advancing bone remodelling process at the early stage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单皮质和双皮质螺钉的应力屏蔽预测:有限元分析
内固定的稳定性对于确保骨折骨的正常形成和重建过程起着至关重要的作用。假体固定失败通常与骨-假体界面的短期和长期不稳定有关。骨-种植体相互作用产生复杂的机械相互作用,可能影响应力分布,从而影响种植体固定物的生物力学性能稳定性。此外,种植体螺钉参数即螺纹尺寸、几何设计和材料特性成为影响骨-种植体相互作用的附加因素。本研究的目的是探讨单皮质和双皮质螺钉参数对螺钉-骨相互作用机制的影响。为了评估螺钉与骨之间的应力传递,采用应力参数即应力传递参数(STP)。在改变两种材料(不锈钢A316和钛合金Ti-6Al-4V)、螺杆长度和螺杆节距的情况下,建立了全履带螺杆的二维有限元模型。弹性模量越小,种植体-骨界面间的应力传递越大。由于钛具有较低的弹性模量,因此与不锈钢相比,钛具有较高的STP值,有利于应力的传递和分布。而两种类型的螺钉之间不同螺距的影响表明,全螺纹双皮质螺钉的STPs值在更细的螺距尺寸上显示出显著的结果,可能在早期促进骨重建过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
期刊最新文献
Investigation of collision estimation with vehicle and pedestrian using CARLA simulation software Active suspension for all-terrain vehicle with intelligent control using artificial neural networks The influence of helmet certification in motorcycle helmets protective performance Sustainable considerations in additive manufacturing processes: A review Co-simulation approach for computational aero-acoustic modeling: Investigating wind-induced noise within two-way radio microphone ports cavity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1