{"title":"Bus clamping PWM for three level neutral point clamped inverters","authors":"U. C. Chitra, A. Rajendran","doi":"10.1109/TAPENERGY.2015.7229639","DOIUrl":null,"url":null,"abstract":"Three level neutral point inverter is one of the most popular multilevel inverter used for industrial applications. To improve the control of it, different pulse width modulation techniques like sine triangle PWM, space vector modulation etc are used. Conventional space vector PWM employs switching sequence, which divides the zero vector time equally between the two zero states in every subcycle. Bus-clamping PWM employ clamping sequences, use only one zero state and results in clamping of one phase during the entire duration in a subcycle. Bus clamping technique reduces the switching losses and improves the efficiency and performance of the inverter. The THD has been reduced and output voltage is improved. Simulation of inverter using BCPWM have been done and is applied to a permanent magnet synchronous motor using MATLAB/SIMULINK. The performances have been compared with other techniques.","PeriodicalId":6552,"journal":{"name":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","volume":"63 1","pages":"322-326"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAPENERGY.2015.7229639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Three level neutral point inverter is one of the most popular multilevel inverter used for industrial applications. To improve the control of it, different pulse width modulation techniques like sine triangle PWM, space vector modulation etc are used. Conventional space vector PWM employs switching sequence, which divides the zero vector time equally between the two zero states in every subcycle. Bus-clamping PWM employ clamping sequences, use only one zero state and results in clamping of one phase during the entire duration in a subcycle. Bus clamping technique reduces the switching losses and improves the efficiency and performance of the inverter. The THD has been reduced and output voltage is improved. Simulation of inverter using BCPWM have been done and is applied to a permanent magnet synchronous motor using MATLAB/SIMULINK. The performances have been compared with other techniques.