LibHSA: One step towards mastering the era of heterogeneous hardware accelerators using FPGAs

M. Reichenbach, Philipp Holzinger, K. Häublein, T. Lieske, Paul Blinzer, D. Fey
{"title":"LibHSA: One step towards mastering the era of heterogeneous hardware accelerators using FPGAs","authors":"M. Reichenbach, Philipp Holzinger, K. Häublein, T. Lieske, Paul Blinzer, D. Fey","doi":"10.1109/DASIP.2017.8122108","DOIUrl":null,"url":null,"abstract":"Various signal and image processing applications require vast acceleration in order to enable real-time processing and meet constraints in power consumption. On FPGAs these applications can be implemented as application-specific circuit. Although IP cores for various applications exist, even interfacing these usually requires experienced knowledge in hardware design. Using FPGAs or other accelerators in a heterogeneous system from a host CPU would simplify the usage of accelerator hardware for a common software developer. Recognizing this, several companies and partners from academia created the HSA Foundation (Heterogeneous System Architecture Foundation) to define a platform specification for heterogeneous system requirements as a macro-architecture for efficient and easy targeting heterogeneous processors from popular high-level languages like C/C++, Python, Java and other domain specific languages. In this paper we present an IP library (LibHSA), that greatly simplifies integration of hardware accelerator functions into existing HSA compliant systems. This allows accelerators to take advantage of the existing HSA programming model, libraries, compilers and toolchains. We will demonstrate the work of LibHSA utilizing a programmable image processor implementation on a Xilinx FPGA. The image processor supports low-level algorithms, e.g. Sobel, Median, Laplace, or Gauss. Our results show a substantial decrease integrating customized hardware accelerators using the LibHSA infrastructure. To our knowledge, our library is the first approach for integrating reconfigurable hardware into an HSA compliant system.","PeriodicalId":6637,"journal":{"name":"2017 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"3 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2017.8122108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Various signal and image processing applications require vast acceleration in order to enable real-time processing and meet constraints in power consumption. On FPGAs these applications can be implemented as application-specific circuit. Although IP cores for various applications exist, even interfacing these usually requires experienced knowledge in hardware design. Using FPGAs or other accelerators in a heterogeneous system from a host CPU would simplify the usage of accelerator hardware for a common software developer. Recognizing this, several companies and partners from academia created the HSA Foundation (Heterogeneous System Architecture Foundation) to define a platform specification for heterogeneous system requirements as a macro-architecture for efficient and easy targeting heterogeneous processors from popular high-level languages like C/C++, Python, Java and other domain specific languages. In this paper we present an IP library (LibHSA), that greatly simplifies integration of hardware accelerator functions into existing HSA compliant systems. This allows accelerators to take advantage of the existing HSA programming model, libraries, compilers and toolchains. We will demonstrate the work of LibHSA utilizing a programmable image processor implementation on a Xilinx FPGA. The image processor supports low-level algorithms, e.g. Sobel, Median, Laplace, or Gauss. Our results show a substantial decrease integrating customized hardware accelerators using the LibHSA infrastructure. To our knowledge, our library is the first approach for integrating reconfigurable hardware into an HSA compliant system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LibHSA:向使用fpga的异构硬件加速器时代迈进了一步
为了实现实时处理和满足功耗限制,各种信号和图像处理应用需要巨大的加速度。在fpga上,这些应用可以作为专用电路实现。尽管存在用于各种应用程序的IP核,但即使是对这些应用程序进行接口,通常也需要具有丰富的硬件设计知识。在来自主机CPU的异构系统中使用fpga或其他加速器将简化普通软件开发人员对加速器硬件的使用。认识到这一点,一些公司和来自学术界的合作伙伴创建了HSA基金会(异构系统架构基金会),将异构系统需求定义为一个平台规范,作为一个宏观架构,用于高效、轻松地针对来自流行的高级语言(如C/ c++、Python、Java和其他领域特定语言)的异构处理器。在本文中,我们提出了一个IP库(LibHSA),它大大简化了硬件加速器功能与现有HSA兼容系统的集成。这允许加速器利用现有的HSA编程模型、库、编译器和工具链。我们将利用Xilinx FPGA上的可编程图像处理器实现演示LibHSA的工作。图像处理器支持低级算法,例如索贝尔算法、中位数算法、拉普拉斯算法或高斯算法。我们的结果显示,使用LibHSA基础设施集成定制硬件加速器的成本大幅降低。据我们所知,我们的库是将可重构硬件集成到HSA兼容系统中的第一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D tomography back-projection parallelization on FPGAs using opencl An efficient framework for design and assessment of arithmetic operators with Reduced-Precision Redundancy Adaptive space-time structural coherence for selective imaging Proposition and evaluation of a real-time generic architecture for a laser stripe detection system on FPGA Demonstrator of a fingerprint recognition algorithm into a low-power microcontroller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1