{"title":"Semi-supervised interpolation in an anticausal learning scenario","authors":"D. Janzing, B. Scholkopf","doi":"10.5555/2789272.2886811","DOIUrl":null,"url":null,"abstract":"According to a recently stated 'independence postulate', the distribution Pcause contains no information about the conditional Peffect|cause while Peffect may contain information about Pcause|effect. Since semi-supervised learning (SSL) attempts to exploit information from PX to assist in predicting Y from X, it should only work in anticausal direction, i.e., when Y is the cause and X is the effect. In causal direction, when X is the cause and Y the effect, unlabelled x-values should be useless. To shed light on this asymmetry, we study a deterministic causal relation Y = f(X) as recently assayed in Information-Geometric Causal Inference (IGCI). Within this model, we discuss two options to formalize the independence of PX and f as an orthogonality of vectors in appropriate inner product spaces. We prove that unlabelled data help for the problem of interpolating a monotonically increasing function if and only if the orthogonality conditions are violated - which we only expect for the anticausal direction. Here, performance of SSL and its supervised baseline analogue is measured in terms of two different loss functions: first, the mean squared error and second the surprise in a Bayesian prediction scenario.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"9 1","pages":"1923-1948"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2886811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
According to a recently stated 'independence postulate', the distribution Pcause contains no information about the conditional Peffect|cause while Peffect may contain information about Pcause|effect. Since semi-supervised learning (SSL) attempts to exploit information from PX to assist in predicting Y from X, it should only work in anticausal direction, i.e., when Y is the cause and X is the effect. In causal direction, when X is the cause and Y the effect, unlabelled x-values should be useless. To shed light on this asymmetry, we study a deterministic causal relation Y = f(X) as recently assayed in Information-Geometric Causal Inference (IGCI). Within this model, we discuss two options to formalize the independence of PX and f as an orthogonality of vectors in appropriate inner product spaces. We prove that unlabelled data help for the problem of interpolating a monotonically increasing function if and only if the orthogonality conditions are violated - which we only expect for the anticausal direction. Here, performance of SSL and its supervised baseline analogue is measured in terms of two different loss functions: first, the mean squared error and second the surprise in a Bayesian prediction scenario.