Automated Detection of Lung Cancer Using CT Scan Images

A. Hoque, A. Farabi, Fahad Ahmed, M. Islam
{"title":"Automated Detection of Lung Cancer Using CT Scan Images","authors":"A. Hoque, A. Farabi, Fahad Ahmed, M. Islam","doi":"10.1109/TENSYMP50017.2020.9230861","DOIUrl":null,"url":null,"abstract":"Lung cancer is one of the most threatening diseases among all other lung disorders which is caused for uncontrolled cell growth. The detection of lung cancer in early stages is the main comprehensible approach to enhance patient's survival rate. Image Processing together with machine learning process and other technologies are used to study medical images for earlier detection and treatment of present clinical world. This research study proposed an automated approach where Computed Tomography (CT) images are used to identify lung cancer at its early stage. The main objective of this research study is to achieve standard performance accuracy. We have proposed a new framework for lung cancer diagnosis using various features extracted from computed tomography images where different steps are used like enhancement, median, filter, segmentation, feature extraction and support vector machine. Finally, the experiment result shows the accuracy performance of our proposed method.","PeriodicalId":6721,"journal":{"name":"2020 IEEE Region 10 Symposium (TENSYMP)","volume":"13 1","pages":"1030-1033"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP50017.2020.9230861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Lung cancer is one of the most threatening diseases among all other lung disorders which is caused for uncontrolled cell growth. The detection of lung cancer in early stages is the main comprehensible approach to enhance patient's survival rate. Image Processing together with machine learning process and other technologies are used to study medical images for earlier detection and treatment of present clinical world. This research study proposed an automated approach where Computed Tomography (CT) images are used to identify lung cancer at its early stage. The main objective of this research study is to achieve standard performance accuracy. We have proposed a new framework for lung cancer diagnosis using various features extracted from computed tomography images where different steps are used like enhancement, median, filter, segmentation, feature extraction and support vector machine. Finally, the experiment result shows the accuracy performance of our proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用CT扫描图像自动检测肺癌
肺癌是所有肺部疾病中最具威胁性的疾病之一,它是由不受控制的细胞生长引起的。早期发现肺癌是提高患者生存率的主要途径。图像处理与机器学习等技术相结合,对医学图像进行研究,以便对当前临床世界进行早期检测和治疗。本研究提出了一种自动化方法,利用计算机断层扫描(CT)图像在早期阶段识别肺癌。本研究的主要目的是达到标准的性能准确性。我们提出了一个新的肺癌诊断框架,利用从计算机断层扫描图像中提取的各种特征,其中使用了不同的步骤,如增强,中值,滤波,分割,特征提取和支持向量机。最后,通过实验验证了该方法的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Honorary Chair Multi-connectivity for URLLC: Performance Comparison of Different Architectures Efficiency Evaluation of P&O MPPT Technique used for Maximum Power Extraction from Solar Photovoltaic System Application of Internet of Things (IoT) to Develop a Smart Watering System for Cairns Parklands – A Case Study Analysis of Stability and Control of Helicopter Flight Dynamics Through Mathematical Modeling in Matlab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1