Methodology for the analysis and quantification of human error probability in manufacturing systems

Valentina Di Pasqualea, Chiara Franciosi, A. Lambiase, S. Miranda
{"title":"Methodology for the analysis and quantification of human error probability in manufacturing systems","authors":"Valentina Di Pasqualea, Chiara Franciosi, A. Lambiase, S. Miranda","doi":"10.1109/SCORED.2016.7810093","DOIUrl":null,"url":null,"abstract":"The most serious problem for human error estimation is the scarcity of empirical data on human performance for the development and validation of Human Reliability Analysis (HRA) approaches. This issue is strongly evident in manufacturing systems, where the data collection and availability of a meaningful dataset to feed human reliability have severe constraints related to time-resource consuming and accuracy of the collection approach. This paper proposes a beginning taxonomy of human error consequences in order to support data collection in manufacturing systems and to identify experimental human error probability (HEP). This taxonomy is the first step of the methodology for HEP analysis and quantification and for validation of theoretical curves of Simulator for Human Error Probability Analysis (SHERPA) model. A new statistical methodology is able to quantify experimental HEPs, starting from the realistic human error consequences, and to compare them with the SHERPA theoretical human error distributions. This methodology, used for the SHERPA validation, may be useful for assessing current HEP estimation into HRA approaches.","PeriodicalId":6865,"journal":{"name":"2016 IEEE Student Conference on Research and Development (SCOReD)","volume":"25 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2016.7810093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The most serious problem for human error estimation is the scarcity of empirical data on human performance for the development and validation of Human Reliability Analysis (HRA) approaches. This issue is strongly evident in manufacturing systems, where the data collection and availability of a meaningful dataset to feed human reliability have severe constraints related to time-resource consuming and accuracy of the collection approach. This paper proposes a beginning taxonomy of human error consequences in order to support data collection in manufacturing systems and to identify experimental human error probability (HEP). This taxonomy is the first step of the methodology for HEP analysis and quantification and for validation of theoretical curves of Simulator for Human Error Probability Analysis (SHERPA) model. A new statistical methodology is able to quantify experimental HEPs, starting from the realistic human error consequences, and to compare them with the SHERPA theoretical human error distributions. This methodology, used for the SHERPA validation, may be useful for assessing current HEP estimation into HRA approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制造系统中人为错误概率的分析与量化方法
人为误差估计中最严重的问题是缺乏用于开发和验证人类可靠性分析(HRA)方法的经验数据。这个问题在制造系统中非常明显,在制造系统中,数据收集和有意义的数据集的可用性,以满足人类的可靠性,受到与收集方法的时间资源消耗和准确性相关的严重限制。本文提出了一个人为错误后果的初步分类,以支持制造系统中的数据收集和识别实验人为错误概率。该分类法是人类错误概率分析模拟器(SHERPA)模型理论曲线验证和人类错误概率分析(HEP)定量分析方法的第一步。一种新的统计方法能够量化实验hep,从现实的人为误差后果开始,并将其与SHERPA理论人为误差分布进行比较。该方法用于SHERPA验证,可能有助于将当前HEP估计评估为HRA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pedestrian detection and tracking with boosted HOG classifiers and Kalman filter Advanced inter-cell interference management technologies in 5G wireless Heterogeneous Networks (HetNets) Intelligent automatic starting engine based on voice recognition system Development of algorithm to characterize flavonoids classes Effect of substrates temperature on structural and optical properties indium tin oxide prepared by RF magnetron sputtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1