A Classification Strategy for Internet of Things Data Based on the Class Separability Analysis of Time Series Dynamics

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Internet of Things Pub Date : 2022-05-09 DOI:10.1145/3533049
J. B. Borges, Heitor S. Ramos, A. Loureiro
{"title":"A Classification Strategy for Internet of Things Data Based on the Class Separability Analysis of Time Series Dynamics","authors":"J. B. Borges, Heitor S. Ramos, A. Loureiro","doi":"10.1145/3533049","DOIUrl":null,"url":null,"abstract":"This article proposes TSCLAS, a time series classification strategy for the Internet of Things (IoT) data, based on the class separability analysis of their temporal dynamics. Given the large number and incompleteness of IoT data, the use of traditional classification algorithms is not possible. Thus, we claim that solutions for IoT scenarios should avoid using raw data directly, preferring their transformation to a new domain. In the ordinal patterns domain, it is possible to capture the temporal dynamics of raw data to distinguish them. However, to be applied to this challenging scenario, TSCLAS follows a strategy for selecting the best parameters for the ordinal patterns transformation based on maximizing the class separability of the time series dynamics. We show that our method is competitive compared to other classification algorithms from the literature. Furthermore, TSCLAS is scalable concerning the length of time series and robust to the presence of missing data gaps on them. By simulating missing data gaps as long as 50% of the data, our method could beat the accuracy of the compared classification algorithms. Besides, even when losing in accuracy, TSCLAS presents lower computation times for both training and testing phases.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"19 1","pages":"1 - 30"},"PeriodicalIF":3.5000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

This article proposes TSCLAS, a time series classification strategy for the Internet of Things (IoT) data, based on the class separability analysis of their temporal dynamics. Given the large number and incompleteness of IoT data, the use of traditional classification algorithms is not possible. Thus, we claim that solutions for IoT scenarios should avoid using raw data directly, preferring their transformation to a new domain. In the ordinal patterns domain, it is possible to capture the temporal dynamics of raw data to distinguish them. However, to be applied to this challenging scenario, TSCLAS follows a strategy for selecting the best parameters for the ordinal patterns transformation based on maximizing the class separability of the time series dynamics. We show that our method is competitive compared to other classification algorithms from the literature. Furthermore, TSCLAS is scalable concerning the length of time series and robust to the presence of missing data gaps on them. By simulating missing data gaps as long as 50% of the data, our method could beat the accuracy of the compared classification algorithms. Besides, even when losing in accuracy, TSCLAS presents lower computation times for both training and testing phases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间序列动态类可分性分析的物联网数据分类策略
基于物联网数据时间动态的类可分性分析,提出了物联网数据的时间序列分类策略TSCLAS。考虑到物联网数据的数量和不完整性,使用传统的分类算法是不可能的。因此,我们声称物联网场景的解决方案应避免直接使用原始数据,而更倾向于将其转换到新领域。在有序模式域中,可以捕获原始数据的时间动态以区分它们。然而,为了应用于这个具有挑战性的场景,TSCLAS遵循一种策略,基于最大化时间序列动态的类可分离性,为有序模式转换选择最佳参数。我们表明,与文献中的其他分类算法相比,我们的方法具有竞争力。此外,TSCLAS在时间序列长度方面具有可扩展性,并且对缺失数据间隙的存在具有鲁棒性。通过模拟高达50%的数据缺失,我们的方法可以击败比较的分类算法的准确性。此外,即使在准确性下降的情况下,TSCLAS在训练和测试阶段都具有较低的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
期刊最新文献
Introduction to the Special Issue on Wireless Sensing for IoT Special Issue on Wireless Sensing for IoT: A Word from the Editor-in-Chief Resilient Intermediary‐Based Key Exchange Protocol for IoT A Two-Mode, Adaptive Security Framework for Smart Home Security Applications Online learning for dynamic impending collision prediction using FMCW radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1