Zimo Liu, Jingya Wang, S. Gong, D. Tao, Huchuan Lu
{"title":"Deep Reinforcement Active Learning for Human-in-the-Loop Person Re-Identification","authors":"Zimo Liu, Jingya Wang, S. Gong, D. Tao, Huchuan Lu","doi":"10.1109/ICCV.2019.00622","DOIUrl":null,"url":null,"abstract":"Most existing person re-identification(Re-ID) approaches achieve superior results based on the assumption that a large amount of pre-labelled data is usually available and can be put into training phrase all at once. However, this assumption is not applicable to most real-world deployment of the Re-ID task. In this work, we propose an alternative reinforcement learning based human-in-the-loop model which releases the restriction of pre-labelling and keeps model upgrading with progressively collected data. The goal is to minimize human annotation efforts while maximizing Re-ID performance. It works in an iteratively updating framework by refining the RL policy and CNN parameters alternately. In particular, we formulate a Deep Reinforcement Active Learning (DRAL) method to guide an agent (a model in a reinforcement learning process) in selecting training samples on-the-fly by a human user/annotator. The reinforcement learning reward is the uncertainty value of each human selected sample. A binary feedback (positive or negative) labelled by the human annotator is used to select the samples of which are used to fine-tune a pre-trained CNN Re-ID model. Extensive experiments demonstrate the superiority of our DRAL method for deep reinforcement learning based human-in-the-loop person Re-ID when compared to existing unsupervised and transfer learning models as well as active learning models.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"15 1","pages":"6121-6130"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73
Abstract
Most existing person re-identification(Re-ID) approaches achieve superior results based on the assumption that a large amount of pre-labelled data is usually available and can be put into training phrase all at once. However, this assumption is not applicable to most real-world deployment of the Re-ID task. In this work, we propose an alternative reinforcement learning based human-in-the-loop model which releases the restriction of pre-labelling and keeps model upgrading with progressively collected data. The goal is to minimize human annotation efforts while maximizing Re-ID performance. It works in an iteratively updating framework by refining the RL policy and CNN parameters alternately. In particular, we formulate a Deep Reinforcement Active Learning (DRAL) method to guide an agent (a model in a reinforcement learning process) in selecting training samples on-the-fly by a human user/annotator. The reinforcement learning reward is the uncertainty value of each human selected sample. A binary feedback (positive or negative) labelled by the human annotator is used to select the samples of which are used to fine-tune a pre-trained CNN Re-ID model. Extensive experiments demonstrate the superiority of our DRAL method for deep reinforcement learning based human-in-the-loop person Re-ID when compared to existing unsupervised and transfer learning models as well as active learning models.