{"title":"Complete Path Planning for Planar Closed Chains Among Point Obstacles","authors":"Guanfeng Liu, J. Trinkle","doi":"10.15607/RSS.2005.I.005","DOIUrl":null,"url":null,"abstract":"A method to compute an exact cell decomposition and corresponding connectivity graph of the configuration space (C-space) of a planar closed chain manipulator moving among point obstacles is developed. By studying the global properties of the loop closure and collision constraint set, a cylindrical decomposition of the collision-free portion of C-space (C-free) is obtained without translating the constraints into polynomials as required by Collins’ method [1]. Once the graph is constructed, motion planning proceeds in the usual way; graph search followed by path construction. Experimental results demonstrate the effectiveness of the algorithm.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"22 1","pages":"33-40"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
A method to compute an exact cell decomposition and corresponding connectivity graph of the configuration space (C-space) of a planar closed chain manipulator moving among point obstacles is developed. By studying the global properties of the loop closure and collision constraint set, a cylindrical decomposition of the collision-free portion of C-space (C-free) is obtained without translating the constraints into polynomials as required by Collins’ method [1]. Once the graph is constructed, motion planning proceeds in the usual way; graph search followed by path construction. Experimental results demonstrate the effectiveness of the algorithm.