Energy Transfer of an Axially Loaded Beam with a Parallel-Coupled Nonlinear Vibration Isolator

IF 1.9 4区 工程技术 Q2 ACOUSTICS Journal of Vibration and Acoustics-Transactions of the Asme Pub Date : 2022-04-12 DOI:10.1115/1.4054324
Ze-Qi Lu, Wen-Hang Liu, H. Ding, Liqun Chen
{"title":"Energy Transfer of an Axially Loaded Beam with a Parallel-Coupled Nonlinear Vibration Isolator","authors":"Ze-Qi Lu, Wen-Hang Liu, H. Ding, Liqun Chen","doi":"10.1115/1.4054324","DOIUrl":null,"url":null,"abstract":"\n Traditional vibration isolation of satellite instruments has an inherent limitation—that low-frequency vibration suppression leads to structural instability. This paper explores a parallel-coupled quasi-zero stiffness (QZS) vibration isolator for an axially loaded beam, with the goal of enhancing the effectiveness of low-frequency isolation. A QZS contains two magnetic rings, which contribute negative stiffness, and one spiral spring, with positive stiffness, a combination that has high static stiffness to resolve the structural instability. The frequency response functions (FRFs) of power flow are used to measure the effectiveness of vibration isolation. The magnetic stiffness of the magnetic rings is calculated using the principle of equivalent magnetic charge. The heights, radii, and gap of the magnetic rings affect its stiffness. The parallel-coupled QZS vibration isolator of an axially loaded beam is modeled using an energy method. Based on the Galerkin truncation, harmonic balance analysis, and arc-length continuation, an approach is proposed to analyze the FRFs of power flow for the parallel-coupled QZS vibration isolation of an axially loaded beam. Numerical results support the analytical results. Both analytical and numerical results show that the power reduction of axially loaded beams with a parallel-coupled quasi-zero vibration isolation system is more significantly suppressed at low frequencies.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"18 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054324","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 32

Abstract

Traditional vibration isolation of satellite instruments has an inherent limitation—that low-frequency vibration suppression leads to structural instability. This paper explores a parallel-coupled quasi-zero stiffness (QZS) vibration isolator for an axially loaded beam, with the goal of enhancing the effectiveness of low-frequency isolation. A QZS contains two magnetic rings, which contribute negative stiffness, and one spiral spring, with positive stiffness, a combination that has high static stiffness to resolve the structural instability. The frequency response functions (FRFs) of power flow are used to measure the effectiveness of vibration isolation. The magnetic stiffness of the magnetic rings is calculated using the principle of equivalent magnetic charge. The heights, radii, and gap of the magnetic rings affect its stiffness. The parallel-coupled QZS vibration isolator of an axially loaded beam is modeled using an energy method. Based on the Galerkin truncation, harmonic balance analysis, and arc-length continuation, an approach is proposed to analyze the FRFs of power flow for the parallel-coupled QZS vibration isolation of an axially loaded beam. Numerical results support the analytical results. Both analytical and numerical results show that the power reduction of axially loaded beams with a parallel-coupled quasi-zero vibration isolation system is more significantly suppressed at low frequencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴向加载梁并联非线性隔振器的能量传递
传统的卫星仪器隔振存在固有的局限性,即低频振动抑制会导致结构失稳。为了提高轴向加载梁的低频隔振效果,本文研究了一种平行耦合准零刚度隔振器。QZS包含两个磁环(负刚度)和一个螺旋弹簧(正刚度),该组合具有较高的静刚度以解决结构不稳定性。利用潮流频响函数(frf)来衡量隔振效果。利用等效磁荷原理计算了磁环的磁刚度。磁环的高度、半径和间隙影响磁环的刚度。采用能量法对轴向加载梁并联耦合QZS隔振器进行了建模。提出了一种基于伽辽金截断、谐波平衡分析和弧长延延的轴向加载梁并联耦合QZS隔振功率流频响分析方法。数值结果支持了分析结果。分析和数值结果表明,并联准零振动隔振系统对轴向载荷梁的功率衰减在低频处得到了较明显的抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
期刊最新文献
Bone conduction: A linear viscoelastic mixed lumped-continuum model for the human skin in the acoustic frequency range A Multiple-Burner Approach to Passive Control of Multiple Longitudinal Acoustic Instabilities in Combustors Widening the Band Gaps of Hourglass Lattice Truss Core Sandwich Structures for Broadband Vibration Suppression Material Extrusion on an Ultrasonic Air Bed for 3D Printing Nonlinear Energy Transfer of a Spar-Floater System using the Inerter Pendulum Vibration Absorber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1