Bashdar A. Salam, S. Khoshnaw, A. M. Adabar, Hedayat M. Sharifi, A. S. Mohammed
{"title":"Model predictions and data fitting can effectively work in spreading COVID-19 pandemic","authors":"Bashdar A. Salam, S. Khoshnaw, A. M. Adabar, Hedayat M. Sharifi, A. S. Mohammed","doi":"10.3934/bioeng.2022014","DOIUrl":null,"url":null,"abstract":"Spreading COVID-19 pandemic has been considered as a global issue. Many international efforts including mathematical approaches have been recently discussed to control this disease more effectively. In this study, we have developed our previous SIUWR model and some transmission parameters are added. Accordingly, the basic reproduction number and elasticity coefficients are calculated at the equilibrium points. Then, some key critical model parameters are identified based on local sensitivities. In addition, the validation of the suggested model is checked by comparing some collected real data in Iraq and France from January 1st, 2021 to December 25th, 2021. Interestingly, there are good agreements between the model results and the real confirmed data using computational simulations in MATLAB. Results provide some biological interpretations and they can be used to control this pandemic more effectively. The model results will be used for both countries in minimizing the impact of this virus on their communities.","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"2672 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/bioeng.2022014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spreading COVID-19 pandemic has been considered as a global issue. Many international efforts including mathematical approaches have been recently discussed to control this disease more effectively. In this study, we have developed our previous SIUWR model and some transmission parameters are added. Accordingly, the basic reproduction number and elasticity coefficients are calculated at the equilibrium points. Then, some key critical model parameters are identified based on local sensitivities. In addition, the validation of the suggested model is checked by comparing some collected real data in Iraq and France from January 1st, 2021 to December 25th, 2021. Interestingly, there are good agreements between the model results and the real confirmed data using computational simulations in MATLAB. Results provide some biological interpretations and they can be used to control this pandemic more effectively. The model results will be used for both countries in minimizing the impact of this virus on their communities.