LPI-based Optimal Radar Power Allocation for Target Time Delay Estimation in Joint Radar and Communications System

Yijie Wang, C. Shi, Fei Wang, Jianjiang Zhou
{"title":"LPI-based Optimal Radar Power Allocation for Target Time Delay Estimation in Joint Radar and Communications System","authors":"Yijie Wang, C. Shi, Fei Wang, Jianjiang Zhou","doi":"10.1109/SAM48682.2020.9104292","DOIUrl":null,"url":null,"abstract":"This paper explores the low probability of intercept (LPI)-based optimal radar power allocation for target time delay estimation in joint radar and communications system. The basis of LPI-based optimal radar power allocation is to minimize the total power consumption of radar system under the constraints of a specified target time delay estimation accuracy and a quality of service (QoS) of communications base station. The expression for Cramér-Rao lower bound (CRLB) is analytically derived and applied to gauge target time delay estimation accuracy. The resulting optimization problem is non-convex, which can be solved by the approach of linear programming. Several numerical results are provided to verify the superiority of the proposed radar power allocation in terms of the LPI performance of radar system. It is also shown that the LPI performance of radar benefits from cooperation with the communication system by reducing the total radiated energy of radar.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"36 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper explores the low probability of intercept (LPI)-based optimal radar power allocation for target time delay estimation in joint radar and communications system. The basis of LPI-based optimal radar power allocation is to minimize the total power consumption of radar system under the constraints of a specified target time delay estimation accuracy and a quality of service (QoS) of communications base station. The expression for Cramér-Rao lower bound (CRLB) is analytically derived and applied to gauge target time delay estimation accuracy. The resulting optimization problem is non-convex, which can be solved by the approach of linear programming. Several numerical results are provided to verify the superiority of the proposed radar power allocation in terms of the LPI performance of radar system. It is also shown that the LPI performance of radar benefits from cooperation with the communication system by reducing the total radiated energy of radar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于lpi的联合雷达与通信系统目标时延优化雷达功率分配
针对联合雷达与通信系统中目标时延估计问题,研究了基于低截获概率(LPI)的最优雷达功率分配方法。基于lpi的雷达功率优化分配的基础是在给定目标时延估计精度和通信基站服务质量(QoS)的约束下,使雷达系统的总功耗最小。解析导出了cram - rao下界(CRLB)的表达式,并将其应用于测量目标时延估计精度。所得到的优化问题是非凸的,可以用线性规划的方法求解。数值结果验证了所提出的雷达功率分配方法在雷达系统LPI性能方面的优越性。通过与通信系统的配合,降低了雷达的总辐射能量,提高了雷达的LPI性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1