Shielding Cosmic Ray Muon using Copper and Aluminium Sheets Composited with Polyethylene Sheets for a Better Protection

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of Mechanical Engineering and Sciences Pub Date : 2023-01-15 DOI:10.24191/jmeche.v20i1.21081
T. Gaaz, Malik N. Hawas
{"title":"Shielding Cosmic Ray Muon using Copper and Aluminium Sheets Composited with Polyethylene Sheets for a Better Protection","authors":"T. Gaaz, Malik N. Hawas","doi":"10.24191/jmeche.v20i1.21081","DOIUrl":null,"url":null,"abstract":"Muons are usually among the most common secondary cosmic ray particles on Earth's surface. Muon research has confirmed their occurrence in a variety of locales. It has been claimed that cosmic radiation in general, and muons in particular, have disastrous consequences on biological things and electrical components on Earth and in space. According to medical sources, cosmic rays have been linked to many ailments affecting people and other creatures. Because of these issues, cosmic ray shielding has become a crucial component of this and comparative studies. Muons emitted by cosmic rays were detected using a muon telescope made of coaxial Geiger-Muller (GM) tubes. This experiment was carried out within the muon lab of Universiti Kebangsaan Malaysia (UKM) in Malaysia to examine how the cosmic ray muon count fluctuates with the shielding of metals (Copper (Cu) and Aluminium (Al)) and polyethylene. The measured muon count for each metal sample was statistically analysed. Using both metals as shielding in this experiment revealed that adding additional Cu and Al sheets reduced the muon count. Generally, the numbers drop as the thickness increases. The results suggest that Cu outperforms Al in shielding efficacy (19% vs 16%). Because Cu has a more significant density than Al, the correlation coefficient R2 for Cu = 0.9372 is greater than R2 for Al = 0.6593, indicating that the trend for Cu is better than the trend for Al in this experiment. To study the shielding capabilities of the two composites, Al/PE and Cu/PE, ten sheets of Polyethylene (PE) were gradually put individually between the Al and Cu sheets. The results showed that PE sheets slightly increased cosmic ray shielding.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"48 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/jmeche.v20i1.21081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Muons are usually among the most common secondary cosmic ray particles on Earth's surface. Muon research has confirmed their occurrence in a variety of locales. It has been claimed that cosmic radiation in general, and muons in particular, have disastrous consequences on biological things and electrical components on Earth and in space. According to medical sources, cosmic rays have been linked to many ailments affecting people and other creatures. Because of these issues, cosmic ray shielding has become a crucial component of this and comparative studies. Muons emitted by cosmic rays were detected using a muon telescope made of coaxial Geiger-Muller (GM) tubes. This experiment was carried out within the muon lab of Universiti Kebangsaan Malaysia (UKM) in Malaysia to examine how the cosmic ray muon count fluctuates with the shielding of metals (Copper (Cu) and Aluminium (Al)) and polyethylene. The measured muon count for each metal sample was statistically analysed. Using both metals as shielding in this experiment revealed that adding additional Cu and Al sheets reduced the muon count. Generally, the numbers drop as the thickness increases. The results suggest that Cu outperforms Al in shielding efficacy (19% vs 16%). Because Cu has a more significant density than Al, the correlation coefficient R2 for Cu = 0.9372 is greater than R2 for Al = 0.6593, indicating that the trend for Cu is better than the trend for Al in this experiment. To study the shielding capabilities of the two composites, Al/PE and Cu/PE, ten sheets of Polyethylene (PE) were gradually put individually between the Al and Cu sheets. The results showed that PE sheets slightly increased cosmic ray shielding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用铜铝片与聚乙烯片复合来屏蔽宇宙射线μ子
μ子通常是地球表面最常见的次级宇宙射线粒子之一。μ子的研究已经证实了它们在许多地方都存在。有人声称,总的来说,宇宙辐射,特别是介子,对地球和太空中的生物和电子元件有灾难性的后果。根据医学资料,宇宙射线与影响人类和其他生物的许多疾病有关。由于这些问题,宇宙射线屏蔽已成为这一研究和比较研究的重要组成部分。宇宙射线发射的μ子是用同轴盖革-穆勒(GM)管制成的μ子望远镜探测到的。这项实验是在马来西亚Kebangsaan Malaysia大学(UKM)的μ子实验室进行的,目的是研究宇宙射线μ子计数如何随着金属(铜(Cu)和铝(Al))和聚乙烯的屏蔽而波动。对每个金属样品的测量μ子计数进行统计分析。在实验中使用这两种金属作为屏蔽,发现添加额外的Cu和Al片可以减少μ子数量。一般来说,随着厚度的增加,数字会下降。结果表明,Cu的屏蔽效能优于Al (19% vs 16%)。由于Cu的密度比Al更显著,所以Cu = 0.9372的相关系数R2大于Al = 0.6593的相关系数R2,说明本实验中Cu的趋势好于Al的趋势。为了研究Al/PE和Cu/PE两种复合材料的屏蔽性能,在Al/PE和Cu/PE之间逐渐分别放置了10层聚乙烯(PE)。结果表明,PE板略有增加宇宙射线屏蔽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
期刊最新文献
Experimental investigation on the effect of process variables for the quality characteristics of AA 2024 processed in cold extrusion Detailed performance analysis of parabolic trough collectors including geometric effect Influence of tool pin profile on the mechanical strength and surface roughness of AA6061-T6 overlap joint friction stir welding Crowd counting algorithm based on face detection and skin color recognition Vibrations control of railway vehicles using decentralized proportional integral derivative controller with flow direction optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1