Application of Heat Treatment to Prevent Fracturing Fluid-Induced Formation Damage and Enhance Matrix Permeability in Shale Gas Reservoirs

Mingjun Chen, Peisong Li, Yili Kang, Gao Xinping, Dongsheng Yang, Maoling Yan
{"title":"Application of Heat Treatment to Prevent Fracturing Fluid-Induced Formation Damage and Enhance Matrix Permeability in Shale Gas Reservoirs","authors":"Mingjun Chen, Peisong Li, Yili Kang, Gao Xinping, Dongsheng Yang, Maoling Yan","doi":"10.2118/205591-ms","DOIUrl":null,"url":null,"abstract":"\n The low flowback efficiency of fracturing fluid would severely increase water saturation in a near-fracture formation and limit gas transport capacity in the matrix of a shale gas reservoir. Formation heat treatment (FHT) is a state-of-the-art technology to prevent water blocking induced by fracturing fluid retention and accelerate gas desorption and diffusion in the matrix. A comprehensive understanding of its formation damage removal mechanisms and determination of production improvement is conducive to enhancing shale gas recovery. In this research, the FHT simulation experiment was launched to investigate the effect of FHT on gas transport capacity, the multi-field coupling model was established to determine the effective depth of FHT, and the numerical simulation model of the shale reservoir was established to analyze the feasibility of FHT. Experimental results show that the shale permeability and porosity were rising overall during the FHT, the L-1 permeability increased by 30- 40 times, the L-2 permeability increased by more than 100 times. The Langmuir pressure increased by 1.68 times and the Langmuir volume decreased by 26%, which means the methane desorption efficiency increased. Results of the simulation demonstrate that the FHT process can practically improve the effect of hydraulic fracturing and significantly increase the well production capacity. The stimulation mechanisms of the FHT include thermal stress cracking, organic matter structure changing, and aqueous phase removal. Furthermore, the special characteristics of the supercritical water such as the strong oxidation, can not be ignored, due to the FHT can assist the retained hydraulic fracturing fluid to reach the critical temperature and pressure of water and transform to the supercritical state. The FHT can not only alleviate the formation damage induced by the fracturing fluid, but also make good use of the retained fracturing fluid to enhance the permeability of a shale gas reservoir, which is an innovative method to dramatically enhance gas transport capacity in shale matrix.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 13, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205591-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The low flowback efficiency of fracturing fluid would severely increase water saturation in a near-fracture formation and limit gas transport capacity in the matrix of a shale gas reservoir. Formation heat treatment (FHT) is a state-of-the-art technology to prevent water blocking induced by fracturing fluid retention and accelerate gas desorption and diffusion in the matrix. A comprehensive understanding of its formation damage removal mechanisms and determination of production improvement is conducive to enhancing shale gas recovery. In this research, the FHT simulation experiment was launched to investigate the effect of FHT on gas transport capacity, the multi-field coupling model was established to determine the effective depth of FHT, and the numerical simulation model of the shale reservoir was established to analyze the feasibility of FHT. Experimental results show that the shale permeability and porosity were rising overall during the FHT, the L-1 permeability increased by 30- 40 times, the L-2 permeability increased by more than 100 times. The Langmuir pressure increased by 1.68 times and the Langmuir volume decreased by 26%, which means the methane desorption efficiency increased. Results of the simulation demonstrate that the FHT process can practically improve the effect of hydraulic fracturing and significantly increase the well production capacity. The stimulation mechanisms of the FHT include thermal stress cracking, organic matter structure changing, and aqueous phase removal. Furthermore, the special characteristics of the supercritical water such as the strong oxidation, can not be ignored, due to the FHT can assist the retained hydraulic fracturing fluid to reach the critical temperature and pressure of water and transform to the supercritical state. The FHT can not only alleviate the formation damage induced by the fracturing fluid, but also make good use of the retained fracturing fluid to enhance the permeability of a shale gas reservoir, which is an innovative method to dramatically enhance gas transport capacity in shale matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热处理在页岩气储层预防压裂液损伤和提高基质渗透率中的应用
压裂液返排效率低会严重增加近裂缝地层的含水饱和度,限制页岩气储层基质中的天然气输送能力。地层热处理(FHT)是一项最先进的技术,可以防止压裂液潴留引起的水堵,并加速气体在基质中的解吸和扩散。全面认识地层损害清除机制,确定增产措施,有利于提高页岩气采收率。本研究开展了FHT模拟实验,研究了FHT对输气能力的影响,建立了多场耦合模型,确定了FHT的有效深度,建立了页岩储层数值模拟模型,分析了FHT的可行性。实验结果表明,在FHT过程中,页岩渗透率和孔隙度总体呈上升趋势,其中L-1渗透率提高了30 ~ 40倍,L-2渗透率提高了100倍以上。Langmuir压力增大1.68倍,Langmuir体积减小26%,甲烷解吸效率提高。仿真结果表明,FHT工艺能够切实改善水力压裂效果,显著提高油井产能。FHT的刺激机制包括热应力开裂、有机物结构改变和水相去除。此外,超临界水的特殊特性,如强氧化性,也不容忽视,因为FHT可以帮助残留的水力压裂液达到临界水的温度和压力,并转变为超临界状态。FHT不仅可以减轻压裂液对地层的伤害,而且可以很好地利用压裂液的残留来提高页岩气储层的渗透率,是一种显著提高页岩基质中天然气输运能力的创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technological Features of Associated Petroleum Gas Miscible Injection MGI in Order to Increase Oil Recovery at a Remote Group of Fields in Western Siberia Interdisciplinary Approach for Wellbore Stability During Slimhole Drilling at Volga-Urals Basin Oilfield A Set of Solutions to Reduce the Water Cut in Well Production Production Optimiser Pilot for the Large Artificially-Lifted and Mature Samotlor Oil Field Artificial Neural Network as a Method for Pore Pressure Prediction throughout the Field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1