Visual interactive evolutionary algorithm for high dimensional outlier detection and data clustering problems

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Bio-Inspired Computation Pub Date : 2012-01-01 DOI:10.1504/IJBIC.2012.044931
Lydia Boudjeloud-Assala
{"title":"Visual interactive evolutionary algorithm for high dimensional outlier detection and data clustering problems","authors":"Lydia Boudjeloud-Assala","doi":"10.1504/IJBIC.2012.044931","DOIUrl":null,"url":null,"abstract":"Usual visualisation techniques for multidimensional datasets, such as parallel coordinates and scatterplot matrices, do not scale well to high numbers of dimensions. A common approach to solve this problem is dimensionality selection. Existing dimensionality selection techniques usually select pertinent dimension subsets that are significant to the user without loose of information. We present concrete cooperation between automatic algorithms, interactive algorithms and visualisation tools: the evolutionary algorithm is used to obtain optimal dimension subsets which represent the original dataset without loosing information for unsupervised mode (clustering or outlier detection). The last effective cooperation is a visualisation tool used to present the user interactive evolutionary algorithm results and let him actively participate in evolutionary algorithm searching with more efficiency resulting in a faster evolutionary algorithm convergence. We have implemented our approach and applied it to real dataset to confirm this approach is effective for supporting the user in the exploration of high dimensional datasets.","PeriodicalId":49059,"journal":{"name":"International Journal of Bio-Inspired Computation","volume":"26 1","pages":"6-13"},"PeriodicalIF":1.7000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bio-Inspired Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1504/IJBIC.2012.044931","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 10

Abstract

Usual visualisation techniques for multidimensional datasets, such as parallel coordinates and scatterplot matrices, do not scale well to high numbers of dimensions. A common approach to solve this problem is dimensionality selection. Existing dimensionality selection techniques usually select pertinent dimension subsets that are significant to the user without loose of information. We present concrete cooperation between automatic algorithms, interactive algorithms and visualisation tools: the evolutionary algorithm is used to obtain optimal dimension subsets which represent the original dataset without loosing information for unsupervised mode (clustering or outlier detection). The last effective cooperation is a visualisation tool used to present the user interactive evolutionary algorithm results and let him actively participate in evolutionary algorithm searching with more efficiency resulting in a faster evolutionary algorithm convergence. We have implemented our approach and applied it to real dataset to confirm this approach is effective for supporting the user in the exploration of high dimensional datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可视化交互进化算法用于高维离群点检测和数据聚类问题
通常的多维数据集可视化技术,如平行坐标和散点图矩阵,不能很好地扩展到高维数。解决这个问题的一个常用方法是维度选择。现有的维数选择技术通常选择对用户有意义的相关维数子集,而不需要大量的信息。我们提出了自动算法、交互算法和可视化工具之间的具体合作:进化算法用于获得代表原始数据集的最优维度子集,而不会丢失无监督模式(聚类或离群值检测)的信息。最后一种有效的合作是可视化工具,用于向用户展示交互式进化算法结果,让用户更高效地主动参与进化算法搜索,从而使进化算法收敛更快。我们已经实现了我们的方法,并将其应用于实际数据集,以证实这种方法对于支持用户探索高维数据集是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Bio-Inspired Computation
International Journal of Bio-Inspired Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
5.10
自引率
5.70%
发文量
37
审稿时长
>12 weeks
期刊介绍: IJBIC discusses the new bio-inspired computation methodologies derived from the animal and plant world, such as new algorithms mimicking the wolf schooling, the plant survival process, etc. Topics covered include: -New bio-inspired methodologies coming from creatures living in nature artificial society- physical/chemical phenomena- New bio-inspired methodology analysis tools, e.g. rough sets, stochastic processes- Brain-inspired methods: models and algorithms- Bio-inspired computation with big data: algorithms and structures- Applications associated with bio-inspired methodologies, e.g. bioinformatics.
期刊最新文献
Design of optimized lung lobe segmentation and Deep learning model for effective COVID-19 prediction Collaborative manufacturing operation mode and modeling simulation of manufacturing enterprise based on collective intelligence UAV Path Planning in Presence of Occlusions as Noisy Combinatorial Multi-Objective Optimisation On the Effect of Particle Update Modes in Particle Swarm Optimization Improved Whale Social Optimization Algorithm and deep fuzzy clustering for optimal and QoS-aware load balancing in cloud computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1