{"title":"Investigation on the effect of powder size on the properties of cladding layer based on RSM","authors":"Kun Yue, G. Lian, Meiyan Feng, Youji Zhan","doi":"10.1051/metal/2022003","DOIUrl":null,"url":null,"abstract":"This paper aims to reveal the influence of different TiC powder particle sizes and process parameters on the cladding morphology of composite materials and realize the forming control of cladding layer. The center composite design of response surface method was adopted to analyze the effects of laser power, scanning speed and particle size on the cladding morphology of composite materials. The mathematical models between process parameters, TiC powder particle size and micro-hardness, wear volume of the composite cladding layer were established and confirmed by variance analysis and model verification. The results indicate that powder particle size has most significant effect on the micro-hardness, and it increase with the increase of scanning speed, laser power and powder particle size; the effect of powder particle size on the wear resistance of the clad layer is most significant, and it increases with the increase of powder particle size and decreases with the increase of scanning speed and laser power. The optimization of process parameters is carried out with the target of maximizing micro-hardness and minimizing wear area. The error rates between prediction and experiment for the micro-hardness and wear area are 0.1% and 2.0% respectively. The results of this paper provide a reference for the prediction and control of the cladding morphology of composite materials.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"18 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2022003","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
This paper aims to reveal the influence of different TiC powder particle sizes and process parameters on the cladding morphology of composite materials and realize the forming control of cladding layer. The center composite design of response surface method was adopted to analyze the effects of laser power, scanning speed and particle size on the cladding morphology of composite materials. The mathematical models between process parameters, TiC powder particle size and micro-hardness, wear volume of the composite cladding layer were established and confirmed by variance analysis and model verification. The results indicate that powder particle size has most significant effect on the micro-hardness, and it increase with the increase of scanning speed, laser power and powder particle size; the effect of powder particle size on the wear resistance of the clad layer is most significant, and it increases with the increase of powder particle size and decreases with the increase of scanning speed and laser power. The optimization of process parameters is carried out with the target of maximizing micro-hardness and minimizing wear area. The error rates between prediction and experiment for the micro-hardness and wear area are 0.1% and 2.0% respectively. The results of this paper provide a reference for the prediction and control of the cladding morphology of composite materials.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.