FIRE BEHAVIOR PREDICTION USING MACHINE LEARNING ALGORITHMS

V. B. Rodrigues, Fillpe Tamiozzo Pereira Torres
{"title":"FIRE BEHAVIOR PREDICTION USING MACHINE LEARNING ALGORITHMS","authors":"V. B. Rodrigues, Fillpe Tamiozzo Pereira Torres","doi":"10.28951/RBB.V38I3.452","DOIUrl":null,"url":null,"abstract":"§ ABSTRACT: Wildfires can affect ecosystem structure and threaten human lives. Understanding fire behavior and predicting fire activities is a crucial issue to mitigate fire impacts. Machine Learning is currently an important tool for the modeling, analysis, and visualization of environmental data and wildfire events. In this study, we assessed the performance of two machine learning algorithms for modeling and predicting fire intensity, the height of flames, and fire rate of spreading in Eucalyptus urophylla (Myrtaceae, Myrtales) and Eucalyptus grandis (Myrtaceae, Myrtales) plantations spatially located in Viçosa MG, Brazil. The Random Forest showed to be the best algorithm for fire modeling, with climatic conditions, and moisture of the combustible material being the variables that significantly affect the prediction of fire behavior.","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"73 1","pages":"343"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/RBB.V38I3.452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

Abstract

§ ABSTRACT: Wildfires can affect ecosystem structure and threaten human lives. Understanding fire behavior and predicting fire activities is a crucial issue to mitigate fire impacts. Machine Learning is currently an important tool for the modeling, analysis, and visualization of environmental data and wildfire events. In this study, we assessed the performance of two machine learning algorithms for modeling and predicting fire intensity, the height of flames, and fire rate of spreading in Eucalyptus urophylla (Myrtaceae, Myrtales) and Eucalyptus grandis (Myrtaceae, Myrtales) plantations spatially located in Viçosa MG, Brazil. The Random Forest showed to be the best algorithm for fire modeling, with climatic conditions, and moisture of the combustible material being the variables that significantly affect the prediction of fire behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习算法进行火灾行为预测
摘要:野火影响生态系统结构,威胁人类生命安全。了解火灾行为和预测火灾活动是减轻火灾影响的关键问题。机器学习目前是环境数据和野火事件建模、分析和可视化的重要工具。在这项研究中,我们评估了两种机器学习算法在巴西viosa MG的尾桉(Myrtaceae, Myrtales)和大桉(Myrtaceae, Myrtales)人工林中模拟和预测火灾强度、火焰高度和火灾蔓延速度的性能。随机森林被证明是火灾建模的最佳算法,气候条件和可燃材料的湿度是显著影响火灾行为预测的变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Brasileira de Biometria
Revista Brasileira de Biometria Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
自引率
0.00%
发文量
0
审稿时长
53 weeks
期刊最新文献
CLUSTER ANALYSIS IDENTIFIES VARIABLES RELATED TO PROGNOSIS OF BREAST CANCER DISEASE UROCHLOA GRASS GROWTH AS A FUNCTION OF NITROGEN AND PHOSPHORUS FERTILIZATION BEST LINEAR UNBIASED LATENT VALUES PREDICTORS FOR FINITE POPULATION LINEAR MODELS WITH DIFFERENT ERROR SOURCES ANALYSIS OF COVID-19 CONTAMINATION AND DEATHS CASES IN BRAZIL ACCORDING TO THE NEWCOMB-BENFORD INCIDENCE AND LETHALITY OF COVID-19 CLUSTERS IN BRAZIL VIA CIRCULAR SCAN METHOD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1