Computing Offloading Based on Deep Reinforcement Learning For Virtual Reality Scene

Yaqi Song, Yun Shen
{"title":"Computing Offloading Based on Deep Reinforcement Learning For Virtual Reality Scene","authors":"Yaqi Song, Yun Shen","doi":"10.1109/BMSB58369.2023.10211194","DOIUrl":null,"url":null,"abstract":"In virtual reality scene, computing offloading is a potential technology to improve rendering and drive applications to the ground. However, MEC servers are usually deployed in a fixed manner in base stations with different demands on computational resources, so in this paper, deep reinforcement learning and digital twin techniques are integrated into an edge computing framework to reduce computational latency and transmission latency in virtual reality scenarios so that different computational resource demands can be met. It designs an computing offloading process for virtual reality scenarios, which is solved by deep reinforcement learning algorithms. Simulation results show that the proposed method can improve the transmission latency and computation latency of multimedia data under virtual reality.","PeriodicalId":13080,"journal":{"name":"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting","volume":"96 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMSB58369.2023.10211194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In virtual reality scene, computing offloading is a potential technology to improve rendering and drive applications to the ground. However, MEC servers are usually deployed in a fixed manner in base stations with different demands on computational resources, so in this paper, deep reinforcement learning and digital twin techniques are integrated into an edge computing framework to reduce computational latency and transmission latency in virtual reality scenarios so that different computational resource demands can be met. It designs an computing offloading process for virtual reality scenarios, which is solved by deep reinforcement learning algorithms. Simulation results show that the proposed method can improve the transmission latency and computation latency of multimedia data under virtual reality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的虚拟现实场景计算卸载
在虚拟现实场景中,计算卸载是一种有潜力的技术,可以提高渲染效果,推动应用落地。然而,MEC服务器通常以固定方式部署在对计算资源有不同需求的基站中,因此本文将深度强化学习和数字孪生技术集成到边缘计算框架中,以降低虚拟现实场景下的计算延迟和传输延迟,从而满足不同的计算资源需求。设计了一种虚拟现实场景的计算卸载流程,并采用深度强化学习算法进行求解。仿真结果表明,该方法可以提高虚拟现实环境下多媒体数据的传输时延和计算时延。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Task Offloading Based on Scalable DAG in Cell-Free HetMEC Networks Resource Pre-caching Strategy of Digital Twin System Based on Hierarchical MEC Architecture Research on key technologies of audiovisual media microservices and industry applications A Closed-loop Operation and Maintenance Architecture based on Digital Twin for Electric Power Communication Networks Edge Fusion of Intelligent Industrial Park Based on MatrixOne and Pravega
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1