FFD: Figure and Formula Detection from Document Images

Junaid Younas, Syed Tahseen Raza Rizvi, M. I. Malik, F. Shafait, P. Lukowicz, Sheraz Ahmed
{"title":"FFD: Figure and Formula Detection from Document Images","authors":"Junaid Younas, Syed Tahseen Raza Rizvi, M. I. Malik, F. Shafait, P. Lukowicz, Sheraz Ahmed","doi":"10.1109/DICTA47822.2019.8945972","DOIUrl":null,"url":null,"abstract":"In this work, we present a novel and generic approach, Figure and Formula Detector (FFD) to detect the formulas and figures from document images. Our proposed method employs traditional computer vision approaches in addition to deep models. We transform input images by applying connected component analysis (CC), distance transform, and colour transform, which are stacked together to generate an input image for the network. The best results produced by FFD for figure and formula detection are with F1-score of 0.906 and 0.905, respectively. We also propose a new dataset for figures and formulas detection to aid future research in this direction. The obtained results advocate that enhancing the input representation can simplify the subsequent optimization problem resulting in significant gains over their conventional counterparts.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"11 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this work, we present a novel and generic approach, Figure and Formula Detector (FFD) to detect the formulas and figures from document images. Our proposed method employs traditional computer vision approaches in addition to deep models. We transform input images by applying connected component analysis (CC), distance transform, and colour transform, which are stacked together to generate an input image for the network. The best results produced by FFD for figure and formula detection are with F1-score of 0.906 and 0.905, respectively. We also propose a new dataset for figures and formulas detection to aid future research in this direction. The obtained results advocate that enhancing the input representation can simplify the subsequent optimization problem resulting in significant gains over their conventional counterparts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FFD:从文档图像中检测图形和公式
在这项工作中,我们提出了一种新的通用方法,图形和公式检测器(FFD)来检测文档图像中的公式和图形。我们提出的方法除了采用深度模型外,还采用传统的计算机视觉方法。我们通过应用连接分量分析(CC)、距离变换和颜色变换来变换输入图像,这些变换叠加在一起为网络生成输入图像。FFD检测图形和配方的最佳结果分别为f1得分为0.906和0.905。我们还提出了一个新的数据集,用于数字和公式的检测,以帮助未来在这方面的研究。得到的结果表明,增强输入表示可以简化后续的优化问题,从而比传统的优化问题获得显著的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Micro Target Detection through Local Motion Feedback in Biologically Inspired Algorithms Hyperspectral Image Analysis for Writer Identification using Deep Learning Robust Image Watermarking Framework Powered by Convolutional Encoder-Decoder Network Single View 3D Point Cloud Reconstruction using Novel View Synthesis and Self-Supervised Depth Estimation Semantic Segmentation under Severe Imaging Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1