New Trends in Time Series Anomaly Detection

Paul Boniol, John Paparizzos, Themis Palpanas
{"title":"New Trends in Time Series Anomaly Detection","authors":"Paul Boniol, John Paparizzos, Themis Palpanas","doi":"10.48786/edbt.2023.80","DOIUrl":null,"url":null,"abstract":"Anomaly detection is an important problem in data analytics with applications in many domains. In recent years, there has been an increasing interest in anomaly detection tasks applied to time series. In this tutorial, we take a holistic view on anomaly detection in time series, starting from the core definitions and taxonomies related to time series and anomaly types, to an extensive description of the anomaly detection methods proposed by different communities in the literature. Then, we discuss shortcomings in traditional evaluation measures. Finally, we present new solutions to assess the quality of anomaly detection approaches and new benchmarks capturing diverse domains and applications.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"13 1","pages":"847-850"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Anomaly detection is an important problem in data analytics with applications in many domains. In recent years, there has been an increasing interest in anomaly detection tasks applied to time series. In this tutorial, we take a holistic view on anomaly detection in time series, starting from the core definitions and taxonomies related to time series and anomaly types, to an extensive description of the anomaly detection methods proposed by different communities in the literature. Then, we discuss shortcomings in traditional evaluation measures. Finally, we present new solutions to assess the quality of anomaly detection approaches and new benchmarks capturing diverse domains and applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列异常检测的新趋势
异常检测是数据分析中的一个重要问题,在许多领域都有应用。近年来,人们对应用于时间序列的异常检测任务越来越感兴趣。在本教程中,我们从时间序列和异常类型相关的核心定义和分类法开始,对不同团体在文献中提出的异常检测方法进行了广泛的描述,全面了解了时间序列中的异常检测。然后,讨论了传统评价方法的不足。最后,我们提出了新的解决方案来评估异常检测方法的质量,以及捕获不同领域和应用的新基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1