Omar Faruk Emon, A. Russell, Gopal Nadkarni, Jae-Won Choi
{"title":"A Low-Cost Visual Grasp Aid for Neuropathy Patients Using Flexible Three-Dimensional Printed Tactile Sensors","authors":"Omar Faruk Emon, A. Russell, Gopal Nadkarni, Jae-Won Choi","doi":"10.1115/1.4051247","DOIUrl":null,"url":null,"abstract":"\n Neuropathy is a nerve-damaging disease that causes those affected to lose feeling in their otherwise functional limbs. It can cause permanent numbing to the peripheral limb of a patient such as a hand or foot. In this report, we present a real-time visualization aid for grasp realization that can be used by patients experiencing numbness of the limb. This wearable electronic device was developed on an open-source microcontroller-based platform. This is a very simple and inexpensive solution. It is referred to as the NeuroGlove, and it provides patients with a visual light scale to allow them to understand the strength of the grasp that they have on any object. A soft tactile sensor was additively manufactured by utilizing a multimaterial direct-print system. The sensor consists of an ionic liquid (IL)-based pressure-sensitive membrane, stretchable electrodes, and insulation membranes. The printed flexible polymeric sensor was evaluated under varying forces. Next, the fabricated sensor was integrated with a microcontroller board where it was programmed to respond in a light scale according to the applied force on the sensor. Finally, the sensor-microcontroller system was installed on a glove to demonstrate a wearable visual aid for neuropathy patients. Additive manufacturing offers the ability for customization in a design, material, and geometry that could potentially lead to printing sensors on prosthetic or robotic hands.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":"234 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4051247","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Neuropathy is a nerve-damaging disease that causes those affected to lose feeling in their otherwise functional limbs. It can cause permanent numbing to the peripheral limb of a patient such as a hand or foot. In this report, we present a real-time visualization aid for grasp realization that can be used by patients experiencing numbness of the limb. This wearable electronic device was developed on an open-source microcontroller-based platform. This is a very simple and inexpensive solution. It is referred to as the NeuroGlove, and it provides patients with a visual light scale to allow them to understand the strength of the grasp that they have on any object. A soft tactile sensor was additively manufactured by utilizing a multimaterial direct-print system. The sensor consists of an ionic liquid (IL)-based pressure-sensitive membrane, stretchable electrodes, and insulation membranes. The printed flexible polymeric sensor was evaluated under varying forces. Next, the fabricated sensor was integrated with a microcontroller board where it was programmed to respond in a light scale according to the applied force on the sensor. Finally, the sensor-microcontroller system was installed on a glove to demonstrate a wearable visual aid for neuropathy patients. Additive manufacturing offers the ability for customization in a design, material, and geometry that could potentially lead to printing sensors on prosthetic or robotic hands.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.