Interpretation Method of GATEM Data Based on PID Controller Iteration Downward Continuation Method  

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Applied Computational Electromagnetics Society Journal Pub Date : 2020-10-16 DOI:10.21203/rs.3.rs-92027/v1
Shan-shan Guan, Yu Zhu, Bingxuan Du, Dong-sheng Li, Yuan Wang, Qiong Wu, Yanju Ji
{"title":"Interpretation Method of GATEM Data Based on PID Controller Iteration Downward Continuation Method  ","authors":"Shan-shan Guan, Yu Zhu, Bingxuan Du, Dong-sheng Li, Yuan Wang, Qiong Wu, Yanju Ji","doi":"10.21203/rs.3.rs-92027/v1","DOIUrl":null,"url":null,"abstract":"\n The Ground-source Airborne Time-domain Electromagnetic (GATEM) system has advantages for high efficiency and complex areas such as mountainous zone. The widely used section interpretation method, ignoring the impact of flight height, which seriously affects the interpretation and imaging accuracy of shallow anomalies. The PID controller iteration downward continuation method is proposed. Based on the original continuation iteration method, the differential coefficient and integral coefficient are added. The result shows that the new method remarkably decreases the iteration number and the accuracy are verified by comparison with the numerical integration solution. The PID controller iteration downward continuation method is applied to the interpretation of GATEM data. For synthetic data, the after continuation interpretation results are closer to the true model than the z = 30 m interpretation results. The method is also applied to GATEM field data in Yangquan City, Shanxi Province, China. The interpretation performs using PID controller iteration downward continuation results in a reliable GATEM field.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-92027/v1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

The Ground-source Airborne Time-domain Electromagnetic (GATEM) system has advantages for high efficiency and complex areas such as mountainous zone. The widely used section interpretation method, ignoring the impact of flight height, which seriously affects the interpretation and imaging accuracy of shallow anomalies. The PID controller iteration downward continuation method is proposed. Based on the original continuation iteration method, the differential coefficient and integral coefficient are added. The result shows that the new method remarkably decreases the iteration number and the accuracy are verified by comparison with the numerical integration solution. The PID controller iteration downward continuation method is applied to the interpretation of GATEM data. For synthetic data, the after continuation interpretation results are closer to the true model than the z = 30 m interpretation results. The method is also applied to GATEM field data in Yangquan City, Shanxi Province, China. The interpretation performs using PID controller iteration downward continuation results in a reliable GATEM field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PID控制器迭代向下延拓法的GATEM数据解释方法
地源机载时域电磁(GATEM)系统在山区等复杂区域具有效率高的优点。目前广泛采用的剖面解释方法忽略了飞行高度的影响,严重影响了浅层异常的解释和成像精度。提出了PID控制器迭代向下延拓的方法。在原有延拓迭代法的基础上,增加了微分系数和积分系数。结果表明,新方法显著减少了迭代次数,并与数值积分解进行了比较,验证了新方法的精度。将PID控制器迭代向下延拓法应用于GATEM数据的解释。对于合成数据,延拓后的解释结果比z = 30 m的解释结果更接近真实模型。该方法还应用于山西省阳泉市GATEM油田资料。利用PID控制器迭代向下延拓的结果进行解释,得到一个可靠的GATEM场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
期刊最新文献
Electromagnetic and Thermal Analysis of a 6/4 Induction Switched Reluctance Machine for Electric Vehicle Application Synthesis of Elliptical Antenna Array using Hybrid SSWOA Algorithm Temperature Controlled Terahertz Absorbers based on Omega Resonators A Simple Interference and Power-based Direction of Arrival Measuring System for Modern Communication A Wideband, High Gain and Low Sidelobe Array Antenna for Modern ETC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1