Graph Convolutional Networks for Categorizing Online Harassment on Twitter

M. Saeidi, E. Milios, N. Zeh
{"title":"Graph Convolutional Networks for Categorizing Online Harassment on Twitter","authors":"M. Saeidi, E. Milios, N. Zeh","doi":"10.1109/ICMLA52953.2021.00156","DOIUrl":null,"url":null,"abstract":"Twitter is one of the social media platforms that people express themselves freely. Harassment is one consequence of these such platforms, which is hard to obstruct. Text categorization and classification is a task that aims to solve this problem. Several studies applied classical machine learning methods and recent deep neural networks to categorize the text. However, only a few studies have explored graph convolutional neural networks while using classical approaches to categorize harassment Tweets. In this work, we propose using graph convolutional networks (GCN) for tweet categorization. Second, we explore this categorization task using classical machine learning approaches and compare the results with the GCN model. Third, we show the effectiveness of the GCN model on this problem by the other evaluation of the model on fewer sample datasets. In addition, we used different embedding approaches to find the best representation for the dataset in each of the models and represent the best embedding approach to use in this problem.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"65 1","pages":"946-951"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Twitter is one of the social media platforms that people express themselves freely. Harassment is one consequence of these such platforms, which is hard to obstruct. Text categorization and classification is a task that aims to solve this problem. Several studies applied classical machine learning methods and recent deep neural networks to categorize the text. However, only a few studies have explored graph convolutional neural networks while using classical approaches to categorize harassment Tweets. In this work, we propose using graph convolutional networks (GCN) for tweet categorization. Second, we explore this categorization task using classical machine learning approaches and compare the results with the GCN model. Third, we show the effectiveness of the GCN model on this problem by the other evaluation of the model on fewer sample datasets. In addition, we used different embedding approaches to find the best representation for the dataset in each of the models and represent the best embedding approach to use in this problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图卷积网络分类在Twitter上的在线骚扰
推特是人们自由表达自己的社交媒体平台之一。骚扰是这些平台的后果之一,很难阻止。文本分类就是为了解决这一问题而进行的一项任务。一些研究应用经典的机器学习方法和最近的深度神经网络对文本进行分类。然而,只有少数研究在使用经典方法对骚扰推文进行分类的同时探索了图卷积神经网络。在这项工作中,我们提出使用图卷积网络(GCN)进行tweet分类。其次,我们使用经典的机器学习方法来探索这个分类任务,并将结果与GCN模型进行比较。第三,我们通过在更少的样本数据集上对模型进行其他评估来证明GCN模型在这个问题上的有效性。此外,我们使用不同的嵌入方法来找到每个模型中数据集的最佳表示,并表示在这个问题中使用的最佳嵌入方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Offensive Content on Twitter During Proud Boys Riots Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences Step Detection using SVM on NURVV Trackers Condition Monitoring for Power Converters via Deep One-Class Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1