J. Vladić, Nataša Nastić, T. Janković, K. Šavikin, N. Menković, I. Lončarević, S. Vidovic
{"title":"Microencapsulation of Sideritis raeseri Boiss. & Heldr. subsp. raeseri Extract Using Spray Drying with Maltodextrin and Whey Protein","authors":"J. Vladić, Nataša Nastić, T. Janković, K. Šavikin, N. Menković, I. Lončarević, S. Vidovic","doi":"10.3311/ppch.19060","DOIUrl":null,"url":null,"abstract":"Multiple medical properties and beneficial influence on health attributed to the aerial parts of Sideritis raeseri Boiss. & Heldr. subsp. raeseri indicated the need for further investigation. S. raeseri extracts were subjected to microencapsulation by the spray drying process in order to disperse and preserve unstable active compounds within a protective matrix. Two inlet air temperatures (120 and 140 ºC) were applied for the encapsulation of S. raeseri extract in a matrix composed of maltodextrin (10, 20, and 40%) or whey protein (40%). The effects of spray drying on physico-chemical properties, contents of total phenols and flavonoids, as well as of individual flavonoid glycosides of the obtained powders were determined. The 40% whey protein treatment increased bulk density (238.46 mg/mL) while it decreased hygroscopicity (14.27%). In addition, the high maltodextrin concentration of the S. raeseri powder resulted in the highest process efficiency (63.46%), the highest water solubility index (86.40%), and the lowest water absorption index (5.71%). Moreover, powders produced without maltodextrin were characterized by greater content of flavonoid glycosides. Overall, the results suggested that S. raeseri powders produced using spray-dried technique under adequate conditions could be considered as a novel functional and pharmaceutical ingredient.","PeriodicalId":19922,"journal":{"name":"Periodica Polytechnica Chemical Engineering","volume":"06 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.19060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Multiple medical properties and beneficial influence on health attributed to the aerial parts of Sideritis raeseri Boiss. & Heldr. subsp. raeseri indicated the need for further investigation. S. raeseri extracts were subjected to microencapsulation by the spray drying process in order to disperse and preserve unstable active compounds within a protective matrix. Two inlet air temperatures (120 and 140 ºC) were applied for the encapsulation of S. raeseri extract in a matrix composed of maltodextrin (10, 20, and 40%) or whey protein (40%). The effects of spray drying on physico-chemical properties, contents of total phenols and flavonoids, as well as of individual flavonoid glycosides of the obtained powders were determined. The 40% whey protein treatment increased bulk density (238.46 mg/mL) while it decreased hygroscopicity (14.27%). In addition, the high maltodextrin concentration of the S. raeseri powder resulted in the highest process efficiency (63.46%), the highest water solubility index (86.40%), and the lowest water absorption index (5.71%). Moreover, powders produced without maltodextrin were characterized by greater content of flavonoid glycosides. Overall, the results suggested that S. raeseri powders produced using spray-dried technique under adequate conditions could be considered as a novel functional and pharmaceutical ingredient.
期刊介绍:
The main scope of the journal is to publish original research articles in the wide field of chemical engineering including environmental and bioengineering.