Saumitro Dasgupta, Kuan Fang, Kevin Chen, S. Savarese
{"title":"DeLay: Robust Spatial Layout Estimation for Cluttered Indoor Scenes","authors":"Saumitro Dasgupta, Kuan Fang, Kevin Chen, S. Savarese","doi":"10.1109/CVPR.2016.73","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the spatial layout of an indoor scene from a monocular RGB image, modeled as the projection of a 3D cuboid. Existing solutions to this problem often rely strongly on hand-engineered features and vanishing point detection, which are prone to failure in the presence of clutter. In this paper, we present a method that uses a fully convolutional neural network (FCNN) in conjunction with a novel optimization framework for generating layout estimates. We demonstrate that our method is robust in the presence of clutter and handles a wide range of highly challenging scenes. We evaluate our method on two standard benchmarks and show that it achieves state of the art results, outperforming previous methods by a wide margin.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"6 1","pages":"616-624"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116
Abstract
We consider the problem of estimating the spatial layout of an indoor scene from a monocular RGB image, modeled as the projection of a 3D cuboid. Existing solutions to this problem often rely strongly on hand-engineered features and vanishing point detection, which are prone to failure in the presence of clutter. In this paper, we present a method that uses a fully convolutional neural network (FCNN) in conjunction with a novel optimization framework for generating layout estimates. We demonstrate that our method is robust in the presence of clutter and handles a wide range of highly challenging scenes. We evaluate our method on two standard benchmarks and show that it achieves state of the art results, outperforming previous methods by a wide margin.