Supervised Deep Learning for Head Motion Correction in PET.

IF 0.5 4区 历史学 Q4 ECONOMICS Australian Economic History Review Pub Date : 2022-09-01 Epub Date: 2022-09-16 DOI:10.1007/978-3-031-16440-8_19
Tianyi Zeng, Jiazhen Zhang, Enette Revilla, Eléonore V Lieffrig, Xi Fang, Yihuan Lu, John A Onofrey
{"title":"Supervised Deep Learning for Head Motion Correction in PET.","authors":"Tianyi Zeng, Jiazhen Zhang, Enette Revilla, Eléonore V Lieffrig, Xi Fang, Yihuan Lu, John A Onofrey","doi":"10.1007/978-3-031-16440-8_19","DOIUrl":null,"url":null,"abstract":"<p><p>Head movement is a major limitation in brain positron emission tomography (PET) imaging, which results in image artifacts and quantification errors. Head motion correction plays a critical role in quantitative image analysis and diagnosis of nervous system diseases. However, to date, there is no approach that can track head motion continuously without using an external device. Here, we develop a deep learning-based algorithm to predict rigid motion for brain PET by lever-aging existing dynamic PET scans with gold-standard motion measurements from external Polaris Vicra tracking. We propose a novel Deep Learning for Head Motion Correction (DL-HMC) methodology that consists of three components: (i) PET input data encoder layers; (ii) regression layers to estimate the six rigid motion transformation parameters; and (iii) feature-wise transformation (FWT) layers to condition the network to tracer time-activity. The input of DL-HMC is sampled pairs of one-second 3D cloud representations of the PET data and the output is the prediction of six rigid transformation motion parameters. We trained this network in a supervised manner using the Vicra motion tracking information as gold-standard. We quantitatively evaluate DL-HMC by comparing to gold-standard Vicra measurements and qualitatively evaluate the reconstructed images as well as perform region of interest standard uptake value (SUV) measurements. An algorithm ablation study was performed to determine the contributions of each of our DL-HMC design choices to network performance. Our results demonstrate accurate motion prediction performance for brain PET using a data-driven registration approach without external motion tracking hardware. All code is publicly available on GitHub: https://github.com/OnofreyLab/dl-hmc_miccai2022.</p>","PeriodicalId":54143,"journal":{"name":"Australian Economic History Review","volume":"7 1","pages":"194-203"},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725740/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Economic History Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-16440-8_19","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

Abstract

Head movement is a major limitation in brain positron emission tomography (PET) imaging, which results in image artifacts and quantification errors. Head motion correction plays a critical role in quantitative image analysis and diagnosis of nervous system diseases. However, to date, there is no approach that can track head motion continuously without using an external device. Here, we develop a deep learning-based algorithm to predict rigid motion for brain PET by lever-aging existing dynamic PET scans with gold-standard motion measurements from external Polaris Vicra tracking. We propose a novel Deep Learning for Head Motion Correction (DL-HMC) methodology that consists of three components: (i) PET input data encoder layers; (ii) regression layers to estimate the six rigid motion transformation parameters; and (iii) feature-wise transformation (FWT) layers to condition the network to tracer time-activity. The input of DL-HMC is sampled pairs of one-second 3D cloud representations of the PET data and the output is the prediction of six rigid transformation motion parameters. We trained this network in a supervised manner using the Vicra motion tracking information as gold-standard. We quantitatively evaluate DL-HMC by comparing to gold-standard Vicra measurements and qualitatively evaluate the reconstructed images as well as perform region of interest standard uptake value (SUV) measurements. An algorithm ablation study was performed to determine the contributions of each of our DL-HMC design choices to network performance. Our results demonstrate accurate motion prediction performance for brain PET using a data-driven registration approach without external motion tracking hardware. All code is publicly available on GitHub: https://github.com/OnofreyLab/dl-hmc_miccai2022.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 PET 头部运动校正的有监督深度学习。
头部运动是脑部正电子发射断层成像(PET)的一个主要限制因素,会导致图像伪影和量化误差。头部运动校正在定量图像分析和神经系统疾病诊断中起着至关重要的作用。然而,迄今为止,还没有一种方法能在不使用外部设备的情况下连续跟踪头部运动。在这里,我们开发了一种基于深度学习的算法,通过利用现有的动态 PET 扫描和来自外部 Polaris Vicra 跟踪的黄金标准运动测量,预测脑 PET 的刚性运动。我们提出了一种新颖的头部运动校正深度学习(DL-HMC)方法,该方法由三个部分组成:(i) PET 输入数据编码层;(ii) 估计六个刚性运动转换参数的回归层;(iii) 根据示踪剂时间活动调节网络的特征变换 (FWT) 层。DL-HMC 的输入是 PET 数据一秒三维云表示的采样对,输出是六个刚性变换运动参数的预测。我们使用 Vicra 运动跟踪信息作为黄金标准,以监督方式对该网络进行了训练。我们将 DL-HMC 与黄金标准的 Vicra 测量结果进行比较,对其进行定量评估,并对重建图像进行定性评估,同时进行感兴趣区标准摄取值 (SUV) 测量。我们进行了一项算法消融研究,以确定我们的 DL-HMC 设计选择对网络性能的贡献。我们的研究结果表明,使用数据驱动的配准方法,无需外部运动跟踪硬件,即可实现脑 PET 的精确运动预测性能。所有代码均可在 GitHub 上公开获取:https://github.com/OnofreyLab/dl-hmc_miccai2022。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
21
期刊介绍: The Australian Economic History Review is concerned with the historical treatment of economic, social and business issues, particularly (but not exclusively) relating to Australia, New Zealand and adjoining regions in Asia and the Pacific. Papers examine these issues not only from the perspective of economic history but also from the related disciplines of history, economics, history of economic thought, industrial relations, demography, sociology, politics and business studies.
期刊最新文献
Supervised Deep Learning for Head Motion Correction in PET. Whey and Casein Proteins and Medium-Chain Saturated Fatty Acids from Milk Do Not Increase Low-Grade Inflammation in Abdominally Obese Adults. The Power of Economic Ideas: The Origins of Keynesian Macroeconomic Management in Interwar Australia 1929–39 – By Alex Millmow Up From the Underworld: Coalminers and Community in Wonthaggi 1909 to 1968 – By Andrew Reeves Global Economic History: a Very Short Introduction – By Robert C. Allen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1