{"title":"Automatic Curation of Content Tables for Educational Videos","authors":"Arpan Mukherjee, Shubhi Tiwari, Tanya Chowdhury, Tanmoy Chakraborty","doi":"10.1145/3331184.3331400","DOIUrl":null,"url":null,"abstract":"Traditional forms of education are increasingly being replaced by online forms of learning. With many degrees being awarded without the requirement of co-location, it becomes necessary to build tools to enhance online learning interfaces. Online educational videos are often long and do not have enough metadata. Viewers trying to learn about a particular topic have to go through the entire video to find suitable content. We present a novel architecture to curate content tables for educational videos. We harvest text and acoustic properties of the videos to form a hierarchical content table (similar to a table of contents available in a textbook). We allow users to browse the video smartly by skipping to a particular portion rather than going through the entire video. We consider other text-based approaches as our baselines. We find that our approach beats the macro F1-score and micro F1-score of baseline by 39.45% and 35.76% respectively. We present our demo as an independent web page where the user can paste the URL of the video to obtain a generated hierarchical table of contents and navigate to the required content. In the spirit of reproducibility, we make our code public at https://goo.gl/Qzku9d and provide a screen cast to be viewed at https://goo.gl/4HSV1v.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Traditional forms of education are increasingly being replaced by online forms of learning. With many degrees being awarded without the requirement of co-location, it becomes necessary to build tools to enhance online learning interfaces. Online educational videos are often long and do not have enough metadata. Viewers trying to learn about a particular topic have to go through the entire video to find suitable content. We present a novel architecture to curate content tables for educational videos. We harvest text and acoustic properties of the videos to form a hierarchical content table (similar to a table of contents available in a textbook). We allow users to browse the video smartly by skipping to a particular portion rather than going through the entire video. We consider other text-based approaches as our baselines. We find that our approach beats the macro F1-score and micro F1-score of baseline by 39.45% and 35.76% respectively. We present our demo as an independent web page where the user can paste the URL of the video to obtain a generated hierarchical table of contents and navigate to the required content. In the spirit of reproducibility, we make our code public at https://goo.gl/Qzku9d and provide a screen cast to be viewed at https://goo.gl/4HSV1v.