F. Salahi, A. Daneshvar, M. Homayounfar, M. Shokouhifar
{"title":"A Comparative Study of Meta-heuristic Algorithms in Supply Chain Networks","authors":"F. Salahi, A. Daneshvar, M. Homayounfar, M. Shokouhifar","doi":"10.30495/JIEI.2021.1919032.1076","DOIUrl":null,"url":null,"abstract":"Today, with the development of Information Technology (IT) and economic globalization, the suppliers’ selection has been emphasized in supply chain systems. Accordingly, artificial intelligence-based methods have attracted much attention. Hence, in this research, the selection of appropriate suppliers with respect to the multi-resource supply policy, and the implementation of lateral transshipment have been studied, and meta-heuristic algorithms have been employed to solve the problem. In the proposed method, the supply chain network is improved by minimizing the inventory shortages through utilizing lateral transshipment between different factories. In order to efficiently solve the problem, a hybrid meta-heuristic algorithm based on population-based genetic algorithm (GA) and single-solution simulated annealing (SA), named GASA, is propose, in order to simultaneously gain with the advantages of both algorithms, i.e., global search ability of GA and local search ability of SA. In order to compare the results of the proposed GASA, it is compared with GA and SA, to find the best solution. Given the parameters optimization and conducted analyses and comparisons of primary and hybrid algorithms performance, the hybrid GASA algorithm has been identified as the most efficient algorithm to solve the problem,compared to the other algorithms, emphasizing cost reduction and shortage volume.","PeriodicalId":37850,"journal":{"name":"Journal of Industrial Engineering International","volume":"58 1","pages":"52-62"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Engineering International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JIEI.2021.1919032.1076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Today, with the development of Information Technology (IT) and economic globalization, the suppliers’ selection has been emphasized in supply chain systems. Accordingly, artificial intelligence-based methods have attracted much attention. Hence, in this research, the selection of appropriate suppliers with respect to the multi-resource supply policy, and the implementation of lateral transshipment have been studied, and meta-heuristic algorithms have been employed to solve the problem. In the proposed method, the supply chain network is improved by minimizing the inventory shortages through utilizing lateral transshipment between different factories. In order to efficiently solve the problem, a hybrid meta-heuristic algorithm based on population-based genetic algorithm (GA) and single-solution simulated annealing (SA), named GASA, is propose, in order to simultaneously gain with the advantages of both algorithms, i.e., global search ability of GA and local search ability of SA. In order to compare the results of the proposed GASA, it is compared with GA and SA, to find the best solution. Given the parameters optimization and conducted analyses and comparisons of primary and hybrid algorithms performance, the hybrid GASA algorithm has been identified as the most efficient algorithm to solve the problem,compared to the other algorithms, emphasizing cost reduction and shortage volume.
期刊介绍:
Journal of Industrial Engineering International is an international journal dedicated to the latest advancement of industrial engineering. The goal of this journal is to provide a platform for engineers and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of industrial engineering. All manuscripts must be prepared in English and are subject to a rigorous and fair peer-review process. Accepted articles will immediately appear online. The journal publishes original research articles, review articles, technical notes, case studies and letters to the Editor, including but not limited to the following fields: Operations Research and Decision-Making Models, Production Planning and Inventory Control, Supply Chain Management, Quality Engineering, Applications of Fuzzy Theory in Industrial Engineering, Applications of Stochastic Models in Industrial Engineering, Applications of Metaheuristic Methods in Industrial Engineering.