Learning to Generate Pseudo-Code from Source Code Using Statistical Machine Translation (T)

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, S. Sakti, T. Toda, Satoshi Nakamura
{"title":"Learning to Generate Pseudo-Code from Source Code Using Statistical Machine Translation (T)","authors":"Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, S. Sakti, T. Toda, Satoshi Nakamura","doi":"10.1109/ASE.2015.36","DOIUrl":null,"url":null,"abstract":"Pseudo-code written in natural language can aid the comprehension of source code in unfamiliar programming languages. However, the great majority of source code has no corresponding pseudo-code, because pseudo-code is redundant and laborious to create. If pseudo-code could be generated automatically and instantly from given source code, we could allow for on-demand production of pseudo-code without human effort. In this paper, we propose a method to automatically generate pseudo-code from source code, specifically adopting the statistical machine translation (SMT) framework. SMT, which was originally designed to translate between two natural languages, allows us to automatically learn the relationship between source code/pseudo-code pairs, making it possible to create a pseudo-code generator with less human effort. In experiments, we generated English or Japanese pseudo-code from Python statements using SMT, and find that the generated pseudo-code is largely accurate, and aids code understanding.","PeriodicalId":6586,"journal":{"name":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"15 1","pages":"574-584"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"245","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2015.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 245

Abstract

Pseudo-code written in natural language can aid the comprehension of source code in unfamiliar programming languages. However, the great majority of source code has no corresponding pseudo-code, because pseudo-code is redundant and laborious to create. If pseudo-code could be generated automatically and instantly from given source code, we could allow for on-demand production of pseudo-code without human effort. In this paper, we propose a method to automatically generate pseudo-code from source code, specifically adopting the statistical machine translation (SMT) framework. SMT, which was originally designed to translate between two natural languages, allows us to automatically learn the relationship between source code/pseudo-code pairs, making it possible to create a pseudo-code generator with less human effort. In experiments, we generated English or Japanese pseudo-code from Python statements using SMT, and find that the generated pseudo-code is largely accurate, and aids code understanding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习用统计机器翻译从源代码生成伪代码(T)
用自然语言编写的伪代码可以帮助理解用不熟悉的编程语言编写的源代码。然而,绝大多数源代码都没有相应的伪代码,因为伪代码是冗余的,而且创建起来很费力。如果伪代码可以从给定的源代码自动地、即时地生成,我们就可以允许按需生产伪代码,而不需要人工的努力。本文提出了一种从源代码自动生成伪代码的方法,具体采用统计机器翻译(SMT)框架。SMT最初设计用于在两种自然语言之间进行翻译,它允许我们自动学习源代码/伪代码对之间的关系,从而可以用更少的人力创建伪代码生成器。在实验中,我们使用SMT从Python语句生成英语或日语伪代码,并发现生成的伪代码在很大程度上是准确的,并且有助于代码理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cost-Efficient Sampling for Performance Prediction of Configurable Systems (T) Refactorings for Android Asynchronous Programming Study and Refactoring of Android Asynchronous Programming (T) The iMPAcT Tool: Testing UI Patterns on Mobile Applications Combining Deep Learning with Information Retrieval to Localize Buggy Files for Bug Reports (N)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1