{"title":"Stream data analysis of body sensors for sleep posture monitoring: An automatic labelling approach","authors":"Poyuan Jeng, Li-Chun Wang","doi":"10.1109/WOCC.2017.7928969","DOIUrl":null,"url":null,"abstract":"Sleeping is one of the most important activities in our daily lives. However, very few people really understand their sleeping habits, which affect sleep-related diseases such as sleep apnea, back problems or even snoring. Most current techniques that monitor, predict and quantify sleep postures are limited to use in hospitals and/or need the intervention of caregivers. In this paper, we describe a system to automatically monitor, predict and quantify sleep postures that may be self-applied by the general public even in a non-hospital environment such as at a persons home. A Random Forest approach is adopted during training to predict and quantify sleep postures. After going through training procedures, a person needs only one sensor placed on the wrist to recognize the persons sleep postures. Our preliminary experiments using a set of testing data show about 90 percent accuracy, indicating that this design has a promising future to accurately analyze, predict and quantify human sleep postures.","PeriodicalId":6471,"journal":{"name":"2017 26th Wireless and Optical Communication Conference (WOCC)","volume":"7 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th Wireless and Optical Communication Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2017.7928969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Sleeping is one of the most important activities in our daily lives. However, very few people really understand their sleeping habits, which affect sleep-related diseases such as sleep apnea, back problems or even snoring. Most current techniques that monitor, predict and quantify sleep postures are limited to use in hospitals and/or need the intervention of caregivers. In this paper, we describe a system to automatically monitor, predict and quantify sleep postures that may be self-applied by the general public even in a non-hospital environment such as at a persons home. A Random Forest approach is adopted during training to predict and quantify sleep postures. After going through training procedures, a person needs only one sensor placed on the wrist to recognize the persons sleep postures. Our preliminary experiments using a set of testing data show about 90 percent accuracy, indicating that this design has a promising future to accurately analyze, predict and quantify human sleep postures.