{"title":"Parallel online aggregation in action","authors":"Chengjie Qin, Florin Rusu","doi":"10.1145/2484838.2484874","DOIUrl":null,"url":null,"abstract":"Online aggregation provides continuous estimates to the final result of a computation during the actual processing. The user can stop the computation as soon as the estimate is accurate enough, typically early in the execution, or can let the processing terminate and obtain the exact result. In this demonstration, we introduce a general framework for parallel online aggregation in which estimation does not incur overhead on top of the actual processing. We define a generic interface to express any estimation model that abstracts completely the execution details. We design multiple sampling-based estimators suited for parallel online aggregation and implement them inside the framework. Demonstration participants are shown how estimates to general SQL aggregation queries over terabytes of TPC-H data are generated during the entire processing. Due to parallel execution, the estimate converges to the correct result in a matter of seconds even for the most difficult queries. The behavior of the estimators is evaluated under different operating regimes of the distributed cluster used in the demonstration.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"27 1","pages":"46:1-46:4"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484838.2484874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Online aggregation provides continuous estimates to the final result of a computation during the actual processing. The user can stop the computation as soon as the estimate is accurate enough, typically early in the execution, or can let the processing terminate and obtain the exact result. In this demonstration, we introduce a general framework for parallel online aggregation in which estimation does not incur overhead on top of the actual processing. We define a generic interface to express any estimation model that abstracts completely the execution details. We design multiple sampling-based estimators suited for parallel online aggregation and implement them inside the framework. Demonstration participants are shown how estimates to general SQL aggregation queries over terabytes of TPC-H data are generated during the entire processing. Due to parallel execution, the estimate converges to the correct result in a matter of seconds even for the most difficult queries. The behavior of the estimators is evaluated under different operating regimes of the distributed cluster used in the demonstration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行在线聚合正在起作用
在线聚合在实际处理过程中为计算的最终结果提供连续的估计。一旦估计足够准确,用户可以立即停止计算,通常是在执行的早期,或者可以让处理终止并获得确切的结果。在这个演示中,我们介绍了一个用于并行在线聚合的通用框架,在这个框架中,估计不会在实际处理的基础上产生开销。我们定义了一个通用接口来表达任何对执行细节完全抽象的评估模型。我们设计了多个适合并行在线聚合的基于采样的估计器,并在框架内实现它们。演示参与者将看到如何在整个处理过程中生成对tb TPC-H数据的一般SQL聚合查询的估计。由于并行执行,即使对于最困难的查询,估计也会在几秒钟内收敛到正确的结果。在演示中使用的分布式集群的不同操作制度下,评估了估计器的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1