Jeremy M Perrelle, Andrew J Boreland, Jasmine M Gamboa, Prarthana Gowda, N Sanjeeva Murthy
{"title":"Biomimetic Strategies for Peripheral Nerve Injury Repair: An Exploration of Microarchitecture and Cellularization.","authors":"Jeremy M Perrelle, Andrew J Boreland, Jasmine M Gamboa, Prarthana Gowda, N Sanjeeva Murthy","doi":"10.1007/s44174-022-00039-8","DOIUrl":null,"url":null,"abstract":"<p><p>Injuries to the nervous system present formidable challenges to scientists, clinicians, and patients. While regeneration within the central nervous system is minimal, peripheral nerves can regenerate, albeit with limitations. The regenerative mechanisms of the peripheral nervous system thus provide fertile ground for clinical and scientific advancement, and opportunities to learn fundamental lessons regarding nerve behavior in the context of regeneration, particularly the relationship of axons to their support cells and the extracellular matrix environment. However, few current interventions adequately address peripheral nerve injuries. This article aims to elucidate areas in which progress might be made toward developing better interventions, particularly using synthetic nerve grafts. The article first provides a thorough review of peripheral nerve anatomy, physiology, and the regenerative mechanisms that occur in response to injury. This is followed by a discussion of currently available interventions for peripheral nerve injuries. Promising biomaterial fabrication techniques which aim to recapitulate nerve architecture, along with approaches to enhancing these biomaterial scaffolds with growth factors and cellular components, are then described. The final section elucidates specific considerations when developing nerve grafts, including utilizing induced pluripotent stem cells, Schwann cells, nerve growth factors, and multilayered structures that mimic the architectures of the natural nerve.</p>","PeriodicalId":8582,"journal":{"name":"Australian Journal of Grape and Wine Research","volume":"21 1","pages":"21-37"},"PeriodicalIF":2.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Grape and Wine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44174-022-00039-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Injuries to the nervous system present formidable challenges to scientists, clinicians, and patients. While regeneration within the central nervous system is minimal, peripheral nerves can regenerate, albeit with limitations. The regenerative mechanisms of the peripheral nervous system thus provide fertile ground for clinical and scientific advancement, and opportunities to learn fundamental lessons regarding nerve behavior in the context of regeneration, particularly the relationship of axons to their support cells and the extracellular matrix environment. However, few current interventions adequately address peripheral nerve injuries. This article aims to elucidate areas in which progress might be made toward developing better interventions, particularly using synthetic nerve grafts. The article first provides a thorough review of peripheral nerve anatomy, physiology, and the regenerative mechanisms that occur in response to injury. This is followed by a discussion of currently available interventions for peripheral nerve injuries. Promising biomaterial fabrication techniques which aim to recapitulate nerve architecture, along with approaches to enhancing these biomaterial scaffolds with growth factors and cellular components, are then described. The final section elucidates specific considerations when developing nerve grafts, including utilizing induced pluripotent stem cells, Schwann cells, nerve growth factors, and multilayered structures that mimic the architectures of the natural nerve.
期刊介绍:
The Australian Journal of Grape and Wine Research provides a forum for the exchange of information about new and significant research in viticulture, oenology and related fields, and aims to promote these disciplines throughout the world. The Journal publishes results from original research in all areas of viticulture and oenology. This includes issues relating to wine, table and drying grape production; grapevine and rootstock biology, genetics, diseases and improvement; viticultural practices; juice and wine production technologies; vine and wine microbiology; quality effects of processing, packaging and inputs; wine chemistry; sensory science and consumer preferences; and environmental impacts of grape and wine production. Research related to other fermented or distilled beverages may also be considered. In addition to full-length research papers and review articles, short research or technical papers presenting new and highly topical information derived from a complete study (i.e. not preliminary data) may also be published. Special features and supplementary issues comprising the proceedings of workshops and conferences will appear periodically.