Prediction of Size of Buried Objects using Ground Penetrating Radar and Machine Learning Techniques

Nairit Barkataki, Sharmistha Mazumdar, Rajdeep Talukdar, Priyanka Chakraborty, B. Tiru, Utpal Sarma
{"title":"Prediction of Size of Buried Objects using Ground Penetrating Radar and Machine Learning Techniques","authors":"Nairit Barkataki, Sharmistha Mazumdar, Rajdeep Talukdar, Priyanka Chakraborty, B. Tiru, Utpal Sarma","doi":"10.1109/ComPE49325.2020.9200094","DOIUrl":null,"url":null,"abstract":"Ground penetrating radar (GPR) uses electromagnetic (EM) wave to detect the subsurface objects. Interpretation and analysis of GPR signals are still challenging tasks as it requires skilled user (geologists in most cases). Particularly difficult is the prediction of the object sizes. This paper proposes a new method for predicting size of buried objects. First, standard scaling pre-processing techniques are used to optimise the B-Scan data. The features are then supplied to Random Forest (RF) and Support Vector Machine (SVM) classifiers to automatically predict the size of the buried object. The proposed feature based RF classifier shows similar performance in the accuracy of classification compared to SVM (Radial Basis Function kernel) system.","PeriodicalId":6804,"journal":{"name":"2020 International Conference on Computational Performance Evaluation (ComPE)","volume":"25 1","pages":"781-785"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Performance Evaluation (ComPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComPE49325.2020.9200094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ground penetrating radar (GPR) uses electromagnetic (EM) wave to detect the subsurface objects. Interpretation and analysis of GPR signals are still challenging tasks as it requires skilled user (geologists in most cases). Particularly difficult is the prediction of the object sizes. This paper proposes a new method for predicting size of buried objects. First, standard scaling pre-processing techniques are used to optimise the B-Scan data. The features are then supplied to Random Forest (RF) and Support Vector Machine (SVM) classifiers to automatically predict the size of the buried object. The proposed feature based RF classifier shows similar performance in the accuracy of classification compared to SVM (Radial Basis Function kernel) system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用探地雷达和机器学习技术预测埋藏物体的大小
探地雷达(GPR)是一种利用电磁波探测地下物体的雷达。GPR信号的解释和分析仍然是一项具有挑战性的任务,因为它需要熟练的用户(大多数情况下是地质学家)。特别困难的是物体大小的预测。本文提出了一种预测埋藏物尺寸的新方法。首先,采用标准缩放预处理技术对b扫描数据进行优化。然后将这些特征提供给随机森林(RF)和支持向量机(SVM)分类器,以自动预测被埋物体的大小。所提出的基于特征的射频分类器在分类精度上与SVM (Radial Basis Function kernel,径向基函数核)系统相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Architecture Search with Improved Genetic Algorithm for Image Classification Electricity Demand Prediction using Data Driven Forecasting Scheme: ARIMA and SARIMA for Real-Time Load Data of Assam Freeware Solution for Preventing Data Leakage by Insider for Windows Framework Developing a Highly Secure and High Capacity LSB Steganography Technique using PRNG Assessment of Technical Parameters of Renewable Energy System : An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1