Wojciech Turbański, M. Sydor, Łukasz Matwiej, K. Wiaderek
{"title":"Moisture swelling and shrinkage of pine wood versus susceptibility to robotic assembly of furniture elements","authors":"Wojciech Turbański, M. Sydor, Łukasz Matwiej, K. Wiaderek","doi":"10.5604/01.3001.0015.5274","DOIUrl":null,"url":null,"abstract":"Moisture swelling and shrinkage of pine wood and susceptibility to robotic assembly of furniture elements. Background and Objectives. Processing technology, storage conditions and wood properties affect the actual dimensions of wooden elements. It was decided to experimentally check how the dimensions of samples, made of the selected wood species, will change under the influence of different storage conditions, typical for industrial environments. And especially how these changes will affect the susceptibility to assembly of upholstery frame rails that form a box joint. Materials and Methods. The tests were performed on three series of rails made of Scotch pine wood. Each tested series consisted of 12 elements. First, the five dimensions forming the box joint were measured. Then, each series was exposed to different conditions: in the industrial hall (air of RH = 29-48% and t = 16-24°C), in the compressor room (RH = 24-51%, t = 13-27°C) and outside in a covered shed (RH = 20-50%, t = 3-23°C). After 35 days the dimensions were measured again. Results. It was found that the average moisture content decreased and the dimensional deviations increased in the samples stored in the production hall and in the compressor room. In samples stored outside, the mean moisture content did not change, but the dimensional deviations increased significantly. Discussion. The storage of wooden elements increases the deviations from assigned dimensions. Exposure to repeated changes in moisture content and ambient temperature, even without changing the final moisture content of the elements, results in greater dimensional changes than storage under more stabilized conditions that reduce wood moisture content. Conclusions. The shrinkage and swelling of wood due to changes in its moisture content are not fully reversible, therefore, apart from maintaining the appropriate temperature and air humidity during storage, it is important to keep these conditions unchanged.\n\n","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of WULS, Forestry and Wood Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.5274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Moisture swelling and shrinkage of pine wood and susceptibility to robotic assembly of furniture elements. Background and Objectives. Processing technology, storage conditions and wood properties affect the actual dimensions of wooden elements. It was decided to experimentally check how the dimensions of samples, made of the selected wood species, will change under the influence of different storage conditions, typical for industrial environments. And especially how these changes will affect the susceptibility to assembly of upholstery frame rails that form a box joint. Materials and Methods. The tests were performed on three series of rails made of Scotch pine wood. Each tested series consisted of 12 elements. First, the five dimensions forming the box joint were measured. Then, each series was exposed to different conditions: in the industrial hall (air of RH = 29-48% and t = 16-24°C), in the compressor room (RH = 24-51%, t = 13-27°C) and outside in a covered shed (RH = 20-50%, t = 3-23°C). After 35 days the dimensions were measured again. Results. It was found that the average moisture content decreased and the dimensional deviations increased in the samples stored in the production hall and in the compressor room. In samples stored outside, the mean moisture content did not change, but the dimensional deviations increased significantly. Discussion. The storage of wooden elements increases the deviations from assigned dimensions. Exposure to repeated changes in moisture content and ambient temperature, even without changing the final moisture content of the elements, results in greater dimensional changes than storage under more stabilized conditions that reduce wood moisture content. Conclusions. The shrinkage and swelling of wood due to changes in its moisture content are not fully reversible, therefore, apart from maintaining the appropriate temperature and air humidity during storage, it is important to keep these conditions unchanged.