Mixed Type Multi-attribute Pairwise Comparisons Learning

N. N. Qomariyah, D. Kazakov
{"title":"Mixed Type Multi-attribute Pairwise Comparisons Learning","authors":"N. N. Qomariyah, D. Kazakov","doi":"10.1109/ICMLA.2017.000-2","DOIUrl":null,"url":null,"abstract":"Building a proactive and unobtrusive recom- mender system is still a challenging task. In the real world, buyers may be offered a lot of choices while trying to choose the item that best suits their preference. Such items may have many attributes, which can complicate the process. The classic approach in decision support systems – to put weights on the importance of each attribute – is not always helpful here. For instance, there are cases when users find it is hard to formulate their priorities explicitly. In this paper, we promote the use of pairwise comparisons, which allow the user preferences to be inferred rather than spell out. Our system aims to learn from a limited number of examples and using clustering to guide the selection of pairs for annotation. The approach is demonstrated in the case of purchasing a used car using a large, real-world data set.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"418 1","pages":"1094-1097"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.000-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Building a proactive and unobtrusive recom- mender system is still a challenging task. In the real world, buyers may be offered a lot of choices while trying to choose the item that best suits their preference. Such items may have many attributes, which can complicate the process. The classic approach in decision support systems – to put weights on the importance of each attribute – is not always helpful here. For instance, there are cases when users find it is hard to formulate their priorities explicitly. In this paper, we promote the use of pairwise comparisons, which allow the user preferences to be inferred rather than spell out. Our system aims to learn from a limited number of examples and using clustering to guide the selection of pairs for annotation. The approach is demonstrated in the case of purchasing a used car using a large, real-world data set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合型多属性两两比较学习
建立一个主动、低调的推荐人系统仍然是一项具有挑战性的任务。在现实世界中,买家在试图选择最适合自己偏好的商品时,可能会有很多选择。这些项目可能有许多属性,这可能会使流程复杂化。决策支持系统中的经典方法——对每个属性的重要性赋予权重——在这里并不总是有用的。例如,有些情况下,用户发现很难明确地制定他们的优先级。在本文中,我们提倡使用两两比较,它允许用户偏好推断而不是拼写出来。我们的系统旨在从有限数量的例子中学习,并使用聚类来指导对标注的选择。在购买二手车的案例中,使用了一个大型的真实数据集来演示该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1