High-performance hetero-junction crystalline silicon photovoltaic technology

J. Levrat, C. Allébe, N. Badel, L. Barraud, M. Bonnet-eymard, J. Champliaud, F. Debrot, A. Descoeudres, A. Faes, A. Lachowicz, S. Nicolay, L. Sansonnens, C. Ballif, J. Geissbühler, S. D. Wolf, M. Despeisse
{"title":"High-performance hetero-junction crystalline silicon photovoltaic technology","authors":"J. Levrat, C. Allébe, N. Badel, L. Barraud, M. Bonnet-eymard, J. Champliaud, F. Debrot, A. Descoeudres, A. Faes, A. Lachowicz, S. Nicolay, L. Sansonnens, C. Ballif, J. Geissbühler, S. D. Wolf, M. Despeisse","doi":"10.1109/PVSC.2014.6925134","DOIUrl":null,"url":null,"abstract":"Silicon heterojunction solar cell technology (HJT) takes advantage of ultra-thin amorphous silicon layers deposited on both sides of monocrystalline silicon wafers, enabling excellent silicon wafer surface passivation resulting in high device power output and in addition to efficient use of thin wafers. A full cell processing platform was developed in our laboratory, enabling to achieve > 22 % cell efficiency. Advanced concepts for metallization and interconnection are under study, from fine-line printing combined with SmartWire interconnection to Copper plating. Importantly, we show that the HJT technology intrinsically enables high bifaciality of the cells (> 95 %), and further demonstrates a low thermal coefficient (<; 0.2 - 0.3 %/°C). The high performance of heterojunction cells and SmartWire interconnection based modules allow for very low cost of electricity for Heterojunction based solar systems, with a potential below 6 Euro cents per kWh in Europe, bringing photovoltaics as a very competitive electricity source. It further provides upgrade potential towards 24 % cell efficiency.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"62 1","pages":"1218-1222"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Silicon heterojunction solar cell technology (HJT) takes advantage of ultra-thin amorphous silicon layers deposited on both sides of monocrystalline silicon wafers, enabling excellent silicon wafer surface passivation resulting in high device power output and in addition to efficient use of thin wafers. A full cell processing platform was developed in our laboratory, enabling to achieve > 22 % cell efficiency. Advanced concepts for metallization and interconnection are under study, from fine-line printing combined with SmartWire interconnection to Copper plating. Importantly, we show that the HJT technology intrinsically enables high bifaciality of the cells (> 95 %), and further demonstrates a low thermal coefficient (<; 0.2 - 0.3 %/°C). The high performance of heterojunction cells and SmartWire interconnection based modules allow for very low cost of electricity for Heterojunction based solar systems, with a potential below 6 Euro cents per kWh in Europe, bringing photovoltaics as a very competitive electricity source. It further provides upgrade potential towards 24 % cell efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能异质结晶体硅光伏技术
硅异质结太阳能电池技术(HJT)利用沉积在单晶硅片两侧的超薄非晶硅层,实现优异的硅片表面钝化,从而提高器件功率输出,并有效利用薄晶片。在我们的实验室开发了一个完整的电池处理平台,使电池效率达到bbbb22 %。金属化和互连的先进概念正在研究中,从细线印刷结合SmartWire互连到镀铜。重要的是,我们证明了HJT技术本质上实现了电池的高双面性(> 95%),并进一步证明了低热系数(<;0.2 - 0.3% /°c)。高性能的异质结电池和基于SmartWire互连的模块使得基于异质结的太阳能系统的电力成本非常低,在欧洲每千瓦时的潜在成本低于6欧分,使光伏发电成为非常有竞争力的电力来源。它进一步提供了向24%的电池效率升级的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rapid characterization of extended defects in III–V/Si by electron channeling contrast imaging Transport modeling of InGaN/GaN multiple quantum well solar cells Integration of PV into the energy system: Challenges and measures for generation and load management Determination of a minimum soiling level to affect photovoltaic devices Optical emission spectroscopy of High Power Impulse Magnetron Sputtering (HiPIMS) of CIGS thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1