Few-Electron Single and Double Quantum Dots in an InAs Two-Dimensional Electron Gas

C. Mittag, J. Koski, M. Karalic, C. Thomas, A. Tuaz, A. Hatke, G. Gardner, M. Manfra, J. Danon, T. Ihn, K. Ensslin
{"title":"Few-Electron Single and Double Quantum Dots in an \nInAs\n Two-Dimensional Electron Gas","authors":"C. Mittag, J. Koski, M. Karalic, C. Thomas, A. Tuaz, A. Hatke, G. Gardner, M. Manfra, J. Danon, T. Ihn, K. Ensslin","doi":"10.1103/PRXQUANTUM.2.010321","DOIUrl":null,"url":null,"abstract":"Most proof-of-principle experiments for spin qubits have been performed using GaAs-based quantum dots because of the excellent control they offer over tunneling barriers and the orbital and spin degrees of freedom. Here, we present the first realization of high-quality single and double quantum dots hosted in an InAs two-dimensional electron gas (2DEG), demonstrating accurate control down to the few-electron regime, where we observe a clear Kondo effect and singlet-triplet spin blockade. We measure an electronic $g$-factor of $16$ and a typical magnitude of the random hyperfine fields on the dots of $\\sim 0.6\\, \\mathrm{mT}$. We estimate the spin-orbit length in the system to be $\\sim 5-10\\, \\mu \\mathrm{m}$, which is almost two orders of magnitude longer than typically measured in InAs nanostructures, achieved by a very symmetric design of the quantum well. These favorable properties put the InAs 2DEG on the map as a compelling host for studying fundamental aspects of spin qubits. Furthermore, having weak spin-orbit coupling in a material with a large Rashba coefficient potentially opens up avenues for engineering structures with spin-orbit coupling that can be controlled locally in space and/or time.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PRXQUANTUM.2.010321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Most proof-of-principle experiments for spin qubits have been performed using GaAs-based quantum dots because of the excellent control they offer over tunneling barriers and the orbital and spin degrees of freedom. Here, we present the first realization of high-quality single and double quantum dots hosted in an InAs two-dimensional electron gas (2DEG), demonstrating accurate control down to the few-electron regime, where we observe a clear Kondo effect and singlet-triplet spin blockade. We measure an electronic $g$-factor of $16$ and a typical magnitude of the random hyperfine fields on the dots of $\sim 0.6\, \mathrm{mT}$. We estimate the spin-orbit length in the system to be $\sim 5-10\, \mu \mathrm{m}$, which is almost two orders of magnitude longer than typically measured in InAs nanostructures, achieved by a very symmetric design of the quantum well. These favorable properties put the InAs 2DEG on the map as a compelling host for studying fundamental aspects of spin qubits. Furthermore, having weak spin-orbit coupling in a material with a large Rashba coefficient potentially opens up avenues for engineering structures with spin-orbit coupling that can be controlled locally in space and/or time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InAs二维电子气体中的少电子单量子点和双量子点
大多数自旋量子比特的原理验证实验都是使用基于砷化镓的量子点进行的,因为它们对隧道障碍以及轨道和自旋自由度提供了出色的控制。在这里,我们首次在InAs二维电子气体(2DEG)中实现了高质量的单量子点和双量子点,展示了精确控制到少电子状态,在那里我们观察到清晰的近藤效应和单重态-三重态自旋封锁。我们测量了电子$g$因子$16$和$\sim 0.6\, \mathrm{mT}$点上随机超精细场的典型大小。我们估计系统中的自旋轨道长度为$\sim 5-10\, \mu \mathrm{m}$,这比通常在InAs纳米结构中测量的长度几乎长两个数量级,这是通过非常对称的量子阱设计实现的。这些有利的性质使InAs 2DEG成为研究自旋量子比特基本方面的一个引人注目的宿主。此外,在具有较大Rashba系数的材料中具有弱自旋-轨道耦合可能为具有自旋-轨道耦合的工程结构在空间和/或时间上进行局部控制开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1