Multiple Kernel Representation Learning for WiFi-Based Human Activity Recognition

Han Zou, Yuxun Zhou, Jianfei Yang, Weixi Gu, Lihua Xie, C. Spanos
{"title":"Multiple Kernel Representation Learning for WiFi-Based Human Activity Recognition","authors":"Han Zou, Yuxun Zhou, Jianfei Yang, Weixi Gu, Lihua Xie, C. Spanos","doi":"10.1109/ICMLA.2017.0-148","DOIUrl":null,"url":null,"abstract":"Human activity recognition is becoming the vital underpinning for a myriad of emerging applications in the field of human-computer interaction, mobile computing, and smart grid. Besides the utilization of up-to-date sensing techniques, modern activity recognition systems also require a machine learning (ML) algorithm that leverages the sensory data for identification purposes. In view of the unique characteristics of the measurement data and the ML challenges thereof, we propose a non-intrusive human activity recognition system that only uses existing commodity WiFi routers. The core of our system is a novel multiple kernel representation learning (MKRL) framework that automatically extracts and combines informative patterns from the Channel State Information (CSI) measurements. The MKRL firstly learns a kernel string representation from time, frequency, wavelet, and shape domains with an efficient greedy algorithm. Then it performs information fusion from diverse perspectives based on multi-view kernel learning. Moreover, different stages of MKRL can be seamlessly integrated into a multiple kernel learning framework to build up a robust and comprehensive activity classifier. Extensive experiments are conducted in typical indoor environments and the experimental results demonstrate that the proposed system outperforms existing methods and achieves a 98\\% activity recognition accuracy.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"422 1","pages":"268-274"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.0-148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Human activity recognition is becoming the vital underpinning for a myriad of emerging applications in the field of human-computer interaction, mobile computing, and smart grid. Besides the utilization of up-to-date sensing techniques, modern activity recognition systems also require a machine learning (ML) algorithm that leverages the sensory data for identification purposes. In view of the unique characteristics of the measurement data and the ML challenges thereof, we propose a non-intrusive human activity recognition system that only uses existing commodity WiFi routers. The core of our system is a novel multiple kernel representation learning (MKRL) framework that automatically extracts and combines informative patterns from the Channel State Information (CSI) measurements. The MKRL firstly learns a kernel string representation from time, frequency, wavelet, and shape domains with an efficient greedy algorithm. Then it performs information fusion from diverse perspectives based on multi-view kernel learning. Moreover, different stages of MKRL can be seamlessly integrated into a multiple kernel learning framework to build up a robust and comprehensive activity classifier. Extensive experiments are conducted in typical indoor environments and the experimental results demonstrate that the proposed system outperforms existing methods and achieves a 98\% activity recognition accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于wifi的人体活动识别的多核表示学习
人类活动识别正在成为人机交互、移动计算和智能电网领域众多新兴应用的重要基础。除了利用最新的传感技术外,现代活动识别系统还需要一种机器学习(ML)算法,该算法利用传感数据进行识别。鉴于测量数据的独特性及其对机器学习的挑战,我们提出了一种仅使用现有商品WiFi路由器的非侵入式人体活动识别系统。该系统的核心是一个新颖的多核表示学习(MKRL)框架,该框架可自动从信道状态信息(CSI)测量中提取和组合信息模式。MKRL首先使用一种高效的贪心算法从时间、频率、小波和形状域学习核字符串表示。然后基于多视图核学习从多个角度进行信息融合。此外,MKRL的不同阶段可以无缝集成到一个多核学习框架中,以构建一个鲁棒且全面的活动分类器。在典型的室内环境中进行了大量的实验,实验结果表明,该系统优于现有的方法,达到了98%的活动识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1