Hui Zhu, Cong Yao, Bo-yuan Wei, Chenyu Xu, Xinxin Huang, Yan Liu, Jiankang He, Jianning Zhang, Dichen Li
{"title":"3D printing of functional bioengineered constructs for neural regeneration: a review","authors":"Hui Zhu, Cong Yao, Bo-yuan Wei, Chenyu Xu, Xinxin Huang, Yan Liu, Jiankang He, Jianning Zhang, Dichen Li","doi":"10.1088/2631-7990/ace56c","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producing in vitro nervous tissue models. However, the complexity of nervous tissues poses great challenges to 3D-printed bioengineered analogues, which should possess diverse architectural/chemical/electrical functionalities to resemble the native growth microenvironments for functional neural regeneration. In this work, we provide a state-of-the-art review of the latest development of 3D printing for bioengineered neural constructs. Various 3D printing techniques for neural tissue-engineered scaffolds or living cell-laden constructs are summarized and compared in terms of their unique advantages. We highlight the advanced strategies by integrating topographical, biochemical and electroactive cues inside 3D-printed neural constructs to replicate in vivo-like microenvironment for functional neural regeneration. The typical applications of 3D-printed bioengineered constructs for in vivo repair of injured nervous tissues, bio-electronics interfacing with native nervous system, neural-on-chips as well as brain-like tissue models are demonstrated. The challenges and future outlook associated with 3D printing for functional neural constructs in various categories are discussed.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"21 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ace56c","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
Three-dimensional (3D) printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producing in vitro nervous tissue models. However, the complexity of nervous tissues poses great challenges to 3D-printed bioengineered analogues, which should possess diverse architectural/chemical/electrical functionalities to resemble the native growth microenvironments for functional neural regeneration. In this work, we provide a state-of-the-art review of the latest development of 3D printing for bioengineered neural constructs. Various 3D printing techniques for neural tissue-engineered scaffolds or living cell-laden constructs are summarized and compared in terms of their unique advantages. We highlight the advanced strategies by integrating topographical, biochemical and electroactive cues inside 3D-printed neural constructs to replicate in vivo-like microenvironment for functional neural regeneration. The typical applications of 3D-printed bioengineered constructs for in vivo repair of injured nervous tissues, bio-electronics interfacing with native nervous system, neural-on-chips as well as brain-like tissue models are demonstrated. The challenges and future outlook associated with 3D printing for functional neural constructs in various categories are discussed.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.