An Enhanced Security in Medical Image Encryption Based on Multi-level Chaotic DNA Diffusion

Q3 Computer Science 中国图象图形学报 Pub Date : 2023-06-01 DOI:10.18178/joig.11.2.153-160
Mousumi Gupta, Snehashish Bhattacharjee, Biswajoy Chatterjee
{"title":"An Enhanced Security in Medical Image Encryption Based on Multi-level Chaotic DNA Diffusion","authors":"Mousumi Gupta, Snehashish Bhattacharjee, Biswajoy Chatterjee","doi":"10.18178/joig.11.2.153-160","DOIUrl":null,"url":null,"abstract":"A novel medical image encryption technique has been proposed based on the features of DNA encodingdecoding in combination with Logistic map approach. The approach is proven for encryption of highly sensitive medical images with 100 percent integrity or negligible data loss. Testing is done on both high and low-resolution images. Proposed encryption technique consists of two levels of diffusion using the actual structure of the DNA. In the first level of diffusion process, we have used DNA encoding and decoding operations to generate DNA sequence of each pixel. The originality of the work is to use a long DNA structure stored in a text file stored on both sender and receiver’s end to improve the performance of the proposed method. In this initial level of diffusion, DNA sequences are generated for each pixe-land in each of the DNA sequence. Index values are obtained by employing a search operation on the DNA structure. This index values are further modified and ready to be used for next diffusion process. In the second level diffusion, a highly chaotic logistic map is iterated to generate sequences and is employed to extract the chaotic values to form the cipher images. The correlation coefficient analysis, Histogram analysis, Entropy analysis, NPCR, and UACI exhibit significant results. Therefore; the proposed technique can play an important role in the security of low-resolution medical images as well as other visible highly sensitive images.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.2.153-160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

A novel medical image encryption technique has been proposed based on the features of DNA encodingdecoding in combination with Logistic map approach. The approach is proven for encryption of highly sensitive medical images with 100 percent integrity or negligible data loss. Testing is done on both high and low-resolution images. Proposed encryption technique consists of two levels of diffusion using the actual structure of the DNA. In the first level of diffusion process, we have used DNA encoding and decoding operations to generate DNA sequence of each pixel. The originality of the work is to use a long DNA structure stored in a text file stored on both sender and receiver’s end to improve the performance of the proposed method. In this initial level of diffusion, DNA sequences are generated for each pixe-land in each of the DNA sequence. Index values are obtained by employing a search operation on the DNA structure. This index values are further modified and ready to be used for next diffusion process. In the second level diffusion, a highly chaotic logistic map is iterated to generate sequences and is employed to extract the chaotic values to form the cipher images. The correlation coefficient analysis, Histogram analysis, Entropy analysis, NPCR, and UACI exhibit significant results. Therefore; the proposed technique can play an important role in the security of low-resolution medical images as well as other visible highly sensitive images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多级混沌DNA扩散的医学图像加密安全性提高
基于DNA编码解码的特点,结合Logistic映射方法,提出了一种新的医学图像加密技术。该方法已被证明用于高度敏感的医学图像的加密,具有100%的完整性或可忽略不计的数据丢失。在高分辨率和低分辨率图像上都进行了测试。提出的加密技术包括利用DNA的实际结构进行两级扩散。在第一级扩散过程中,我们使用DNA编码和解码操作来生成每个像素的DNA序列。这项工作的独创性在于使用存储在发送方和接收方两端的文本文件中的长DNA结构来提高所提出方法的性能。在这个初始的扩散水平上,DNA序列是为每个DNA序列中的每个像素域生成的。索引值是通过对DNA结构进行搜索操作获得的。该指标值被进一步修改,准备用于下一个扩散过程。在第二级扩散中,迭代一个高度混沌的逻辑映射生成序列,然后提取混沌值形成密码图像。相关系数分析、直方图分析、熵分析、NPCR和UACI均有显著性结果。因此;该技术对低分辨率医学图像以及其他可见的高灵敏度图像的安全防护具有重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
中国图象图形学报
中国图象图形学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍: Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics. Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art. Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.
期刊最新文献
Roselle Pest Detection and Classification Using Threshold and Template Matching Human Action Recognition with Skeleton and Infrared Fusion Model Melanoma Detection Based on SVM Using MATLAB Evaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline MonitoringEvaluation of SSD Architecture for Small Size Object Detection: A Case Study on UAV Oil Pipeline Monitoring Improving Brain Tumor Classification Efficacy through the Application of Feature Selection and Ensemble Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1