Fan-Out Chip on Substrate Device Interconnection Reliability Analysis

Ying-Chih Lee, W. Lai, Ian Hu, M. Shih, C. Kao, D. Tarng, C. Hung
{"title":"Fan-Out Chip on Substrate Device Interconnection Reliability Analysis","authors":"Ying-Chih Lee, W. Lai, Ian Hu, M. Shih, C. Kao, D. Tarng, C. Hung","doi":"10.1109/ECTC.2017.104","DOIUrl":null,"url":null,"abstract":"Fan-Out (FO) chip on substrate is one of the fan-out solution for package integration. This solution brings the short interconnection between die to die for excellent electrical performance. Fan-Out chip on substrate device provides excellent electrical performance in multi-die connection,. The multiple re-distribution layer (RDL) processing is implemented in advance multi-dies FO chip on substrate device for die to die connection meeting higher density electronic connection need. And for complex function request, the area of side-by-side silicon dies size are very close to FO multi-dies chip size, there is narrow die gap between these side-by-side dies. A large coefficient of thermal expansion (CTE) mismatch between epoxy molding compound (EMC) and silicon dies is a significant contributor to the origin of warpage, and will lead to high thermal-mechanical strain and stress at narrow area of side-by-side die gap. The redistribution layer could be high stress risk site by the high thermal-mechanical stress on narrow side-by-side dies gap area. This study is to build a fan-out chip on substrate package numerical simulation model by finite element method (FEM) and get good warpage and thermal-mechanical strain correlation between simulation and real package measurement result by advance Metrology Analyzer (aMA) system. Then we used this equivalent numerical model to compare the thermal-mechanical performance for different redistribution layer pattern design. Finally, generalizing the redistribution layer pattern design guideline and to enhance the package level reliability performance, especially under temperature cycling test (TCT) condition, of fan-out chip on substrate package. The new redistribution layer pattern layout can pass 1000 temperature cycling test cycles and there is lower stress risk on redistribution layer.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"20 1","pages":"22-27"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2017.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Fan-Out (FO) chip on substrate is one of the fan-out solution for package integration. This solution brings the short interconnection between die to die for excellent electrical performance. Fan-Out chip on substrate device provides excellent electrical performance in multi-die connection,. The multiple re-distribution layer (RDL) processing is implemented in advance multi-dies FO chip on substrate device for die to die connection meeting higher density electronic connection need. And for complex function request, the area of side-by-side silicon dies size are very close to FO multi-dies chip size, there is narrow die gap between these side-by-side dies. A large coefficient of thermal expansion (CTE) mismatch between epoxy molding compound (EMC) and silicon dies is a significant contributor to the origin of warpage, and will lead to high thermal-mechanical strain and stress at narrow area of side-by-side die gap. The redistribution layer could be high stress risk site by the high thermal-mechanical stress on narrow side-by-side dies gap area. This study is to build a fan-out chip on substrate package numerical simulation model by finite element method (FEM) and get good warpage and thermal-mechanical strain correlation between simulation and real package measurement result by advance Metrology Analyzer (aMA) system. Then we used this equivalent numerical model to compare the thermal-mechanical performance for different redistribution layer pattern design. Finally, generalizing the redistribution layer pattern design guideline and to enhance the package level reliability performance, especially under temperature cycling test (TCT) condition, of fan-out chip on substrate package. The new redistribution layer pattern layout can pass 1000 temperature cycling test cycles and there is lower stress risk on redistribution layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扇出芯片基板器件互连可靠性分析
基板上的扇出芯片是封装集成的扇出解决方案之一。该解决方案使模具之间的互连时间短,具有优异的电气性能。基板上的扇出芯片在多模连接中提供了优异的电气性能。为了满足高密度电子连接的需要,在衬底器件上预先实现多模FO芯片的多重分布层(RDL)加工。而对于复杂的功能要求,并排硅片的面积尺寸非常接近FO多模芯片的尺寸,并排硅片之间的模隙很小。环氧树脂模塑复合材料(EMC)与硅模之间较大的热膨胀系数(CTE)失配是造成翘曲的重要原因,并会在窄模间隙处导致较高的热机械应变和应力。再分布层在狭窄的并排模隙区存在较高的热-机械应力,可能是高应力危险部位。本研究采用有限元法(FEM)建立了扇形芯片基板封装的数值模拟模型,并利用先进的Metrology Analyzer (aMA)系统获得了模拟结果与实际封装测量结果之间良好的翘曲变形和热-机械应变相关性。然后利用该等效数值模型比较了不同再分布层模式设计下的热力学性能。最后,推广再分布层图案设计准则,提高扇出芯片在基板封装上的封装级可靠性性能,特别是在温度循环测试(TCT)条件下的可靠性性能。新的重分布层网布可通过1000次温度循环试验,重分布层应力风险较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peridynamic Solution of Wetness Equation with Time Dependent Saturated Concentration in ANSYS Framework Axially Tapered Circular Core Polymer Optical Waveguides Enabling Highly Efficient Light Coupling Low Loss Channel-Shuffling Polymer Waveguides: Design and Fabrication Development of Packaging Technology for High Temperature Resistant SiC Module of Automobile Application 3D Packaging of Embedded Opto-Electronic Die and CMOS IC Based on Wet Etched Silicon Interposer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1