Climate warming restructures seasonal dynamics of grassland soil microbial communities.

IF 4.5 Q1 MICROBIOLOGY mLife Pub Date : 2022-09-15 eCollection Date: 2022-09-01 DOI:10.1002/mlf2.12035
Xue Guo, Mengting Yuan, Jiesi Lei, Zhou Shi, Xishu Zhou, Jiabao Li, Ye Deng, Yunfeng Yang, Liyou Wu, Yiqi Luo, James M Tiedje, Jizhong Zhou
{"title":"Climate warming restructures seasonal dynamics of grassland soil microbial communities.","authors":"Xue Guo, Mengting Yuan, Jiesi Lei, Zhou Shi, Xishu Zhou, Jiabao Li, Ye Deng, Yunfeng Yang, Liyou Wu, Yiqi Luo, James M Tiedje, Jizhong Zhou","doi":"10.1002/mlf2.12035","DOIUrl":null,"url":null,"abstract":"<p><p>Soil microbial community's responses to climate warming alter the global carbon cycle. In temperate ecosystems, soil microbial communities function along seasonal cycles. However, little is known about how the responses of soil microbial communities to warming vary when the season changes. In this study, we investigated the seasonal dynamics of soil bacterial community under experimental warming in a temperate tall-grass prairie ecosystem. Our results showed that warming significantly (<i>p</i> = 0.001) shifted community structure, such that the differences of microbial communities between warming and control plots increased nonlinearly (<i>R</i> <sup>2</sup> = 0.578, <i>p</i> = 0.021) from spring to winter. Also, warming significantly (<i>p</i> < 0.050) increased microbial network complexity and robustness, especially during the colder seasons, despite large variations in network size and complexity in different seasons. In addition, the relative importance of stochastic processes in shaping the microbial community decreased by warming in fall and winter but not in spring and summer. Our study indicates that climate warming restructures the seasonal dynamics of soil microbial community in a temperate ecosystem. Such seasonality of microbial responses to warming may enlarge over time and could have significant impacts on the terrestrial carbon cycle.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989843/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil microbial community's responses to climate warming alter the global carbon cycle. In temperate ecosystems, soil microbial communities function along seasonal cycles. However, little is known about how the responses of soil microbial communities to warming vary when the season changes. In this study, we investigated the seasonal dynamics of soil bacterial community under experimental warming in a temperate tall-grass prairie ecosystem. Our results showed that warming significantly (p = 0.001) shifted community structure, such that the differences of microbial communities between warming and control plots increased nonlinearly (R 2 = 0.578, p = 0.021) from spring to winter. Also, warming significantly (p < 0.050) increased microbial network complexity and robustness, especially during the colder seasons, despite large variations in network size and complexity in different seasons. In addition, the relative importance of stochastic processes in shaping the microbial community decreased by warming in fall and winter but not in spring and summer. Our study indicates that climate warming restructures the seasonal dynamics of soil microbial community in a temperate ecosystem. Such seasonality of microbial responses to warming may enlarge over time and could have significant impacts on the terrestrial carbon cycle.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变暖重构草地土壤微生物群落的季节动态。
土壤微生物群落对气候变暖的反应改变了全球碳循环。在温带生态系统中,土壤微生物群落按季节周期发挥作用。然而,人们对季节变化时土壤微生物群落对气候变暖的响应如何变化知之甚少。在这项研究中,我们调查了温带高草草原生态系统在实验性变暖条件下土壤细菌群落的季节动态。结果表明,气候变暖明显(p = 0.001)改变了群落结构,从春季到冬季,气候变暖地块与对照地块之间的微生物群落差异呈非线性增长(R 2 = 0.578,p = 0.021)。同时,气候变暖也明显(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Staphylococcus aureus SOS response: Activation, impact, and drug targets. EmbB and EmbC regulate the sensitivity of Mycobacterium abscessus to echinomycin. Metabolic activities of marine ammonia-oxidizing archaea orchestrated by quorum sensing. Zinc finger 4 negatively controls the transcriptional activator Fzf1 in Saccharomyces cerevisiae. Efficient, compact, and versatile: Type I-F2 CRISPR-Cas system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1