Lazygraph

Q1 Computer Science ACM Sigplan Notices Pub Date : 2018-02-10 DOI:10.1145/3200691.3178508
Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui, Fang Lv, Y. Liu, Xiaobing Feng
{"title":"Lazygraph","authors":"Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui, Fang Lv, Y. Liu, Xiaobing Feng","doi":"10.1145/3200691.3178508","DOIUrl":null,"url":null,"abstract":"Replicas 1 of a vertex play an important role in existing distributed graph processing systems which make a single vertex to be parallel processed by multiple machines and access remote neighbors locally without any remote access. However, replicas of vertices introduce data coherency problem. Existing distributed graph systems treat replicas of a vertex v as an atomic and indivisible vertex, and use an eager data coherency approach to guarantee replicas atomicity. In eager data coherency approach, any changes to vertex data must be immediately communicated to all replicas of v, thus leading to frequent global synchronizations and communications. In this paper, we propose a lazy data coherency approach, called LazyAsync, which treats replicas of a vertex as independent vertices and maintains the data coherency by computations, rather than communications in existing eager approach. Our approach automatically selects some data coherency points from the graph algorithm, and maintains all replicas to share the same global view only at such points, which means the replicas are enabled to maintain different local views between any two adjacent data coherency points. Based on PowerGraph, we develop a distributed graph processing system LazyGraph to implement the LazyAsync approach and exploit graph-aware optimizations. On a 48-node EC2-like cluster, LazyGraph outperforms PowerGraph on four widely used graph algorithms across a variety of real-world graphs, with a speedup ranging from 1.25x to 10.69x.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"20 1","pages":"276 - 289"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3200691.3178508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Replicas 1 of a vertex play an important role in existing distributed graph processing systems which make a single vertex to be parallel processed by multiple machines and access remote neighbors locally without any remote access. However, replicas of vertices introduce data coherency problem. Existing distributed graph systems treat replicas of a vertex v as an atomic and indivisible vertex, and use an eager data coherency approach to guarantee replicas atomicity. In eager data coherency approach, any changes to vertex data must be immediately communicated to all replicas of v, thus leading to frequent global synchronizations and communications. In this paper, we propose a lazy data coherency approach, called LazyAsync, which treats replicas of a vertex as independent vertices and maintains the data coherency by computations, rather than communications in existing eager approach. Our approach automatically selects some data coherency points from the graph algorithm, and maintains all replicas to share the same global view only at such points, which means the replicas are enabled to maintain different local views between any two adjacent data coherency points. Based on PowerGraph, we develop a distributed graph processing system LazyGraph to implement the LazyAsync approach and exploit graph-aware optimizations. On a 48-node EC2-like cluster, LazyGraph outperforms PowerGraph on four widely used graph algorithms across a variety of real-world graphs, with a speedup ranging from 1.25x to 10.69x.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lazygraph
顶点的副本在现有的分布式图处理系统中发挥着重要的作用,它使单个顶点可以由多台机器并行处理,并在不需要远程访问的情况下本地访问远程邻居。然而,顶点的副本引入了数据一致性问题。现有的分布式图系统将顶点v的副本视为原子的、不可分割的顶点,并使用渴望数据一致性方法来保证副本的原子性。在渴望数据一致性方法中,对顶点数据的任何更改都必须立即传达给v的所有副本,从而导致频繁的全局同步和通信。在本文中,我们提出了一种延迟数据一致性方法,称为LazyAsync,它将一个顶点的副本视为独立的顶点,并通过计算来保持数据一致性,而不是像现有的渴望方法那样通过通信来保持数据一致性。我们的方法自动从图算法中选择一些数据一致性点,并维护所有副本仅在这些点上共享相同的全局视图,这意味着副本可以在任意两个相邻的数据一致性点之间维护不同的局部视图。基于PowerGraph,我们开发了一个分布式图形处理系统LazyGraph,实现了LazyAsync方法,并利用了图形感知优化。在一个48节点的类似ec2的集群上,LazyGraph在四种广泛使用的图形算法上优于PowerGraph,在各种现实世界的图形上,加速幅度从1.25倍到10.69倍不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Sigplan Notices
ACM Sigplan Notices 工程技术-计算机:软件工程
CiteScore
4.90
自引率
0.00%
发文量
0
审稿时长
2-4 weeks
期刊介绍: The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).
期刊最新文献
Outcomes of Endoscopic Drainage in Children with Pancreatic Fluid Collections: A Systematic Review and Meta-Analysis. Letter from the Chair SEIS Proceedings of the 2018 ACM SIGPLAN International Symposium on Memory Management, ISMM 2018, Philadelphia, PA, USA, June 18, 2018 Proceedings of the 19th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES 2018, Philadelphia, PA, USA, June 19-20, 2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1